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Abstract

For the past few decades there has been considerable
scientific interest in expression in music performance
(Gabrielsson, 2003). A particularly relevant aspect of
music performance is expressive timing, that is, the
intentional fluctuations of tempo during a performance.
Accordingly, expressive timing has been one of the major
topics in music performance research. As an expressive
parameter, timing is used to clarify themusical structure of
the piece (Clarke, 1988), among other things. The problem
of explaining expressive timing in music performances can
be regarded as a special case of a very wide range of
problems where wewant to learn experimentally about the
temporal behaviour of some dynamical system based on
limited observation. A common way of studying data in
dynamical systems theory is by phase-plane representation.
In this paper we argue that phase-plane representations of
expressive timing provide a useful way of visualizing data,
and furthermore, we show that such representations are
promising in the context of performer characterization and
identification.

1. Introduction and related work

For the past few decades there has been considerable
scientific interest in expression in music performance
(Gabrielsson, 2003). A particularly relevant aspect of
music performance is expressive timing, that is, the
intentional fluctuations of tempo during a performance.
Accordingly, expressive timing has been one of the major
topics in music performance research. A well-known
function of timing as an expressive parameter is the

clarification of structural aspects of the music, like
metrical, phrase, and voice structure (Clarke, 1988;
Palmer, 1997). Furthermore, timing and other temporal
aspects such as global tempo and articulation play a role
in the communication of semantic content, including
emotional (Juslin & Sloboda, 2001), and sensorial
(Canazza et al., 2003) information. In addition to
establishing such global relationships, more detailed
accounts of expressive timing have been given using
several distinct methodologies, such as analysis-by-synth-
esis (Sundberg et al., 1991), and machine learning
(Widmer, 2003). A particularly profound and relatively
large-scale analysis of expressive timing can be found in
Repp (1992).

The problem of explaining expressive timing in music
performances can be regarded as a special case of a very
wide range of problems where we want to learn
experimentally about the temporal behaviour of some
dynamical system based on limited observation, as for
example in population biology, and meteorology. This
dynamical system’s paradigm aims at models that
describe how the state of the system changes over time.
Rather than predicting individual state-space trajectories,
the focus is on the qualitative structure of the state-space
that results from the influence and interaction of possibly
unknown factors and constraints. Such a dynamical
approach has been applied to various aspects of music,
including acoustic modelling (Schoner, 1997), gesture-
based virtual instrument control (Métois, 1996), and
analysis of temporal/pitch complexity of compositions
(Boon & Decroly, 1995).

In the case of music performance, as mentioned
above, past research has already revealed some valuable
insights about the way factors like musical structure and
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intended mood influence expressive timing. In addition,
there has been a long-standing metaphor of music as a
form of motion (Truslit, 1938; Todd, 1992; Friberg &
Sundberg, 1999). This metaphor has led to kinematic
models of expressive dynamics and timing in music
performance (Todd, 1992; Friberg & Sundberg, 1999).
Even if the proposed models have limitations, and the
motion metaphor may be incomplete as an explanation
for expressive phenomena (Desain & Honing, 1996;
Honing, 2005), we believe that it is worthwhile to explore
the dynamical systems view of expressive performance in
more depth.

As in any field concerned with data analysis,
visualization techniques are often very helpful for study-
ing observations from dynamical systems. In particular,
phase-plane visualization can reveal characteristics of
time-series data that are less evident from plots of the
data against time (in the rest of the paper we will refer to
this as time-series plots). The phase-plane is a two-
dimensional plot of some aspects of a dynamical system.
In the case of a simple pendulum for example, a useful
phase-plane is the one that plots the velocity against the
position of the pendulum, as it completely describes the
behaviour of the system. If multiple signals are observed
from the system, phase-plane trajectories can be drawn
by plotting the signals against each other. An example of
this in expressive music performance is the performance
worm (Langner & Goebl, 2003), which visualizes
performances by plotting loudness versus tempo.

In this paper we choose a different phase-plane
method, that exclusively represents tempo information.1

We focus on first-order and second-order phase-planes.
The former plots the derivative of tempo versus tempo,
whereas the latter plots the second versus the first
derivative of tempo. After introducing the visualization
method using schematic examples and describing the
procedure for computing phase-plane trajectories from
expressive performances in Section 2, we review two
expressive gestures in performances of Schumann’s
Träumerei (Section 3). Finally, in Section 4, we describe
an experiment in which we determine the effects of
several parameters of phase-plane representation on
tasks like performer identification.

2. Phase-plane plots versus time-series plots

An obvious question that comes to mind when consider-
ing phase-plane representations of a function (or a time-
series) as an alternative to plotting the function against
time, is what new insights it can possibly give. After all,

the derivatives are fully determined by the function, they
don’t convey any information that is not contained in the
function itself. Rather than providing new information,
phase-plane representations show a new perspective on
the data, just like for example a transformation of a
function from the time to the frequency domain provides
a new perspective. The essential difference from time-
series plots is that the time dimension is implicit rather
than explicit in the phase-plane. Whether this is an
advantage depends on the intended kind of analysis. For
example, if the aim is to get an impression of the trends in
absolute tempo over the course of a performance, a time-
series plot may be more useful than a phase-plane plot.
On the other hand, if the focus is on the particular form
that the change of tempo takes, then phase-plane plots
may provide better insight. The reason for this is that the
tempo trajectory in the phase-plane expresses exclusively
the change in tempo—any episodes of constant tempo
are projected to a single point in the phase-plane. As
opposed to time-series plots, where tempo trajectories by
definition advance steadily in one dimension (time), in
phase-plane plots the change of tempo is expressed in
two dimensions, leading to trajectories that are visually
more distinct than their equivalent time-series plots. We
will illustrate this shortly.

This emphasis on the dynamic aspects of tempo in
phase-plane representations is in accordance with the
observation that the expressive use of timing is mainly
manifested through the momentary fluctuations of
tempo. Absolute tempo, or large scale trends in tempo
are not commonly regarded as the principal expressive
parameters, even if they do belong to the expressive
degrees of freedom of the performer.

2.1 Examples of basic curve types

To get a feel for how to interpret phase-plane representa-
tions, we briefly discuss the phase-plane trajectories of
some archetypal curves. In the first columnofFigure 1, five
basic curves are shown as a functionxof time t. The second
column shows the corresponding first-order phase-planes,
representing the curve as a trajectory through the dx/dt
versus x(t) plane, that is, the first derivative of x(t) against
x(t) itself. The last column shows the second-order phase-
planes, formed by d2x/dt versus dx/dt. The circles indicate
the beginning of the curves, and their corresponding
phase-plane trajectories. The horizontal and vertical
dashed lines indicate the origin in the phase-planes.

Note that constant tempo (row (a) in Figure 1)
corresponds to a single point in the phase-planes, as all
derivatives are zero.2 Constant change of tempo (rows
(b) and (c)) leads to a displacement along the x(t)

1The phase-plane visualization method was introduced in
Grachten et al., (2008). With the current paper, we extend this
work, by a quantitative and qualitative evaluation of the phase-
plane representation.

2We interpret the curves as tempo curves, although these
remarks of course hold independently of the interpretation of
the dimensions.
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Fig. 1. Examples of five basic curve types (first column), and their first- and second-order phase-plane trajectories (second and third
columns respectively); horizontal and vertical dashed lines represent x and y axes respectively; circles indicate the beginning of the
curves/trajectories; units are arbitrary.
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(horizontal in the first-order phase-plane) axis and a
constant offset along the dx/dt axis (vertical in the first-
order phase-plane, and horizontal in the second-order
phase-plane).

Row (d) shows one period of a simple harmonic, or
oscillatory motion. This type of motion is defined by a
second-order differential equation which has sinusoidal
functions as its solutions. Such functions correspond to a
circular motion in both phase-planes, where the end
position of the trajectory is equal to its starting position.
This example illustrates how, as the time dimension is
implicit, repeated curve segments map to the same
trajectory in the phase-plane. Note that due to the
derivative relationship between the vertical dimension
with respect to the horizontal dimension, the movement
of any phase-plane trajectory is necessarily clockwise
around the origin. More precisely, the trajectory always
moves leftward below the horizontal axis, and rightward
above it, and is exactly perpendicular to the horizontal
axis at the time of crossing it.

Finally, row (e) shows a parabolic curve x(t)¼ t2.
Since its first derivative dx/dt¼ 2t is linear in time, the
first-order phase-plane is also a parabola, with the
horizontal and vertical axis interchanged. The second-
order phase-plane trajectory is a straight line segment,
since dx/dt¼ 2. Note that although it is hard to visually
distinguish the parabola from a semi-period of a simple
oscillation in the time-series plot (first column), the
phase-plane trajectories of both types of curves are very
distinct. This is a particularly interesting feature for
mathematical modelling of tempo curves, such as in
Todd (1985), and Repp (1992).

2.2 From time-series to phase-plane trajectories

The concept of a tempo curve, even if ubiquitous in
expressive music performance research, is not straight-
forward. Given that tempo can be loosely defined as the
rate at which events take place, it is inherently related to
a temporal context of events, rather than a single point in
time. For the sake of quantifying tempo over the course
of a performance, it is commonly measured as the
reciprocal of the interval between two consecutive
metrical beats (IBI), and this value is associated either
with the first or the second of the beats for which the IBI
was measured. As the tempo quantity is undefined in the
absence of events, it is questionable whether tempo is
perceived as a constant entity by humans (Desain &
Honing, 1993), and therefore whether it is justified to
interpolate the time-series of tempo values to obtain a
continuous tempo curve. On the other hand, there are
reasons to consider the construction of continuous and
smooth tempo curves from discrete timing information
as appropriate. Firstly, in order for the rhythmical
structure of a piece to be perceptible, tempo must
satisfy certain smoothness constraints (Honing, 2004).

Furthermore, Dixon et al. (2006) argue that tempo
perception of human listeners discards a certain varia-
bility in performed note onsets, implying a beat-grid that
is slightly smoothed with respect to the exact timing of
onsets. This coherence between consecutive tempo
perceptions is expressed by the representation of tempo
as a continuous function of time.

The problem of finding a function that fits to a series
of data values is well known in statistical data analysis,
since a very common situation in empirical studies is to
have a series of measurement values that we hypothesize
or assume to be the result of some process of which the
behaviour can be adequately described by some smooth
function. As is unavoidable in any measurement, the
measured values will include measurement errors and
possibly other distortions of the values that we actually
intended to measure. This view is known as the signal
plus noise model, which is formally represented as:

y ¼ xðtÞ þ e; ð1Þ

where y is a vector of length n containing the measured
values, t is a vector of length n containing the time values
associated with each measurement, x is the unknown
function that we wish to estimate, and e is a vector of length
n containing the error values associated with each measure-
ment. The function x is often chosen to be of the form:

xðtÞ ¼ c0f; ð2Þ

that is, a linear combination of a set of K basis-functions
f, where c is a vector of length K containing the weight
for each basis-function. The fitting of the function x to
the data y can be done by minimizing the summed
squared error:

SSE ¼jj y% Fcjj2; ð3Þ

where F is a n by K matrix such that Fi,k contains fk(i),
the value of the k th basis-function at sampling point i.

As the number of basis-functions K increases, the fit to
the data becomes better, reducing the bias of the estima-
tion. But large values forK also increase the variance of the
estimation, resulting in a less smooth fitted curve. To take
the smoothness constraint into account, a penalty term for
roughness is included in the quantity that is minimized:

PENSSE ¼ SSE2 þ lPEN: ð4Þ

The relative importance of the penalty term is
controlled by the smoothing parameter l. The penalty
term quantifies the roughness as the integrated square of
the second derivative of x:

PEN ¼
Z

½D2xðsÞ'2 ds: ð5Þ
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This minimization criterion is independent of the
choice of the system of basis-functions f. There is a wide
variety of bases that can be sensibly used. Typical bases
are Fourier series and polynomials. Furthermore, with a
slight change of the minimization criterion, kernel
smoothing (e.g. using a Gaussian kernel) can be
construed as a special case of basis expansion with one
basis-function f(t)¼ 1.

In the work described here, we use a B-spline basis for
smoothing, as described in Ramsay and Silverman
(2005). B-splines are piecewise polynomial. This means
that the spline consists of segments defined by a series of
breakpoints, and on each of those segments S the
B-spline is a polynomial. A B-spline S is defined by an
order m, and a sequence of breakpoints t, and is
computed from a set of basis-functions B:

SðtÞ ¼
XmþL%1

k¼1

ckBkðt; tÞ: ð6Þ

Here, Bk(t,t) is the value at point t of the k th basis-
function. L is the number of intervals as defined by the
breakpoint sequence t. The basis-functions are them-
selves B-splines, with compact support. They are
constructed recursively from B-splines of a lower degree.
B-spline smoothing of data is achieved by choosing the
coefficients c¼ (c1, . . . , cmþL71) such that the criterion
PENSSE is minimized.

After computing c , the phase-plane representations
are obtained by computing the first and second
derivatives of the spline S , D1S(t) and D2S(t).

3. Phase-planes of expressive gestures in
Schumann’s Träumerei

We will illustrate the phase-plane visualization for two
performances of a melodic gesture (or motif) from
Schumann’s Träumerei. We will do this in relation to
an earlier study of expressive timing in that piece (Repp,
1992).3 Repp describes the results of an extensive study
of expressive timing of 28 performances of this piece by
renowned pianists. A part of this study is a detailed
investigation of the timing of notes in a particular
melodic gesture (labelled MG2 in Repp, 1992) present in
the piece. A majority of the performances showed an IOI
pattern that could be modelled quite well with a
parabolic curve segment, where the curvature of the
fitted parabola varied from performance to performance.
However, the goodness of fit of the curves to the
measured IOIs was only informally assessed.

Figure 2 shows the IOI curves (the reciprocals of the
tempo curves) and corresponding phase-plane trajec-
tories of two performances of MG2, by Zak (1960) and

Horowitz (1947) respectively. The first column shows the
normalized measured IOI values as circles connected by
dashed lines, together with the fitted splines, as solid
curves. The splines are constructed from cubic poly-
nomials, and are thus of order 4. The breakpoints are
identical for both examples, and their positions (at half
beats 137 and 139) are chosen manually to provide a
good fit to the data with a relatively low number of
breakpoints.4 The roughness penalty l is set to 0.001.

The phase-plane trajectories of Zak’s performance
(Figure 2 (a)) indeed bear a striking resemblance to those
of the parabola shown before, in Figure 1 (e). The first-
order phase-plane trajectory strongly resembles a rotated
parabola, and the second-order phase-plane trajectory is
approximately a straight horizontal line segment going
from left to right. Consequently, this is a performance
that can be very well modelled with a parabola.
Horowitz’s performance (Figure 2 (b)) on the other
hand, is apparently not a prototypical instance of a
parabola. A parabola fitted to this performance would
show a rather poor fit, especially due to the non-constant
curvature in the IOI data. This is confirmed by the phase-
plane trajectories of the fitted spline, which are rather
different from those of the parabola in Figure 1 (e). In
particular, the first-order phase-plane trajectory is
circular rather than parabolic, and also the second-order
phase-plane trajectory is curved rather than straight.
Especially the first-order phase-plane trajectory suggests
oscillatory motion.

3.1 Discussion

The purpose of this example is not so much to challenge
the hypothesis that this particular performance gesture
can be adequately modelled with a parabola (that would
require a more thorough investigation), but to show that
the phase-plane visualization can ‘amplify’ differences
between time series plots. As the example illustrates, in
some cases where one may be inclined to apply the same
model for two tempo (or IOI) curves, the phase-planes
show very distinct trajectories for the two curves.

We believe that phase-plane visualizations can be of
help in modelling expressive tempo precisely for this
reason. It is important to note that the phase-plane
trajectories of common functions like a parabola or a
sinusoidal, did not emerge because we used those
functions as a model. This illustrates the flexibility of
the spline basis expansion for fitting the data.

However, care must also be taken when interpreting
the phase-plane trajectories. Firstly, the examples shown
here are based on a small number of data points, and
thus the trajectories to a certain degree describe ‘space’ in
between the measured data points. Secondly, the fact

3The data used here originates from that study.

4A common practice in spline fitting is to put a breakpoint at
each data point.
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that the phase-plane trajectories tend to diverge more
than the time series plots has the downside that small
artifacts of the fitting (for example some ripples in the
curve between two data points) can have a large impact
on the appearance of the trajectories. Therefore, when
interpreting phase-plane trajectories, it is essential that
the fit of the basis expansion to the data is also inspected,
to verify that the major forms in the trajectories are not
due to curve fitting artifacts.

4. An assessment of alternative phase-plane
representations

In the previous section we have illustrated the use of the
phase-plane representation to visually compare expres-
sive timing gestures of different performers. We have
shown the phase-plane trajectories in different spaces, in
particular the first-order phase-plane, and the second-
order phase-plane. The smoothness of the spline-approx-
imation of the measured data was chosen manually.
Affine transformations, which are typically used to
compare geometric shapes in a scale, position, and
rotation independent way, were not applied in the
examples given.

The question which phase-plane order is most
informative, at which degree of smoothing, and with or
without applying affine transforms, is likely to depend on
the purpose of the analysis. Generally speaking, we
would like to know whether similarities between phase-
plane trajectories tend to be indicative of musically
relevant commonalities between the performances that
those phase-plane trajectories represent. In the current
experiment, we limit ourselves to two such aspects: the
identity of the performer, and the place of occurrence
within the musical piece.

In the literature there is evidence that performers have,
sometimes strongly, idiosyncratic ways of performing
music (Repp, 1998). On the other hand, it is known that
timing profiles of performances tend to have a component
that is common among performers, mainly due to
generally adopted (but mostly implicit) conventions of
how to convey musical structure through timing (Todd,
1985). The context of the occurrence of a phrase may
therefore have an effect on how it is played. For example, a
phrase or musical fragment that is repeated several times
throughout a piece, may be played differently depending
on whether it occurs at the beginning, middle, or ending.

Parallel to these two aspects of expressive performance,
in the experiment described here, we focus on the

Fig. 2. Fitted IOI curves and corresponding phase-plane trajectories for two exemplary performances of a melodic gesture (MG2,
fourth instance, half beats 136–140) from Schumann’s Träumerei, by Zak (1960) (a), and Horowitz (1947) (b) respectively: in the first
column, the circles connected by dashed lines are the measured IOI values (normalized), and the solid line is the fitted spline; diamonds
indicate the breakpoints of the spline; the phase-plane trajectories are annotated with half beat numbers; the units are shown in square
brackets in the axis labels; s denotes the standard deviation of the normalized IOI values.
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comparison of phase-plane trajectories for two contrary
purposes. The first is performer identification, in which the
task is to partition a set of phase-plane trajectories such
that for each performer there is a group that contains all
trajectories of that performer. The second task is to group
fragments of phase-plane trajectories according to their
position in the piece. We regard the accuracy on each of
these tasks as an indicator of how well the phase-plane
representation reflects the performer’s characteristics, and
the score context, respectively. Furthermore, we investi-
gate whether, and how, the choice of the parameters of
representation (i.e. phase-plane order, the degree of
smoothing, normalization) affects this balance.

4.1 Data and procedure

To address these questions, we use data sets containing
phase-plane trajectories describing the performances of
musical fragments. Each data set contains performances
of a single musical piece by several performers. Rather
than using the entire performances, we select those parts
that correspond to the occurrences of a single musical
fragment which is repeated multiple times.5 Thus, with K
performers and N occurrences of the selected fragment, a
data set is a collection of K6N phase-plane trajectories.
Each phase-plane trajectory is labelled with a pair of
identifiers (k,n), where k denotes the k th performer, and
n indicates that the instance is the n th occurrence of the
fragment in the piece. We can then compare a clustering
of the data set that was computed from the phase-plane
trajectories, to the performer-partitioning of the data set
on the one hand, and to the order-of-occurrence-
partitioning on the other. This gives us a way to evaluate
different representations of the performance data with
respect to the partitioning tasks.

Because our prime interest is in the assessment of
experimental parameters that concern the representation
of the data, rather than parameters that concern the
decision-theoretic aspect of clustering, we avoid direct
partitional clustering techniques (such as k-means, or
EM clustering). Instead, we opt for hierarchical cluster-
ing, and using full knowledge of the instance labels, select
a subset of nodes from the dendrogram to form an
optimal partitional clustering.

In the rest of this subsection we will respectively
discuss the alternative data representations of tempo
curves that we consider, the musical material used in the
experiment, and the evaluation of results.

4.1.1 Alternative data representations

The tempo measurements from the performances are
represented as a series of timestamp/tempo pairs, i.e.

(t,y)¼ (t1,y1),. . .,(tM,yM), where ti denotes the time at
which the i th beat occurred (the whole piece spanning M
beats), and yi the tempo value at that time, measured as
the reciprocal of the IBI between beat i and beat i - 1. The
vector y is normalized by subtracting the mean and
dividing by the standard deviation of the values. We use
S to denote the spline approximation of the data as
described in Subsection 2.2, that is S(t) ( y.

The parameter l in Equation 4weights the impact of the
roughness penalty of the functional approximation on the
minimization criterion. Low values of lwill provide better
approximations S(t) of the measured tempo values y, but
at the cost of increasing fluctuations in between the
measurement points t. Higher values of l will result in
smoother curves, that may not fully approximate the
measured values however. In the experiment we use spline-
approximations with varying l values, that jointly cover
the effective range of the parameter.

To produce the phase-plane trajectories of S, we use
the first and second derivatives of S, D1 and D2

respectively, which can be obtained in closed form
from S. In principle, any subset of (S, D1, D2) can be
used to represent the data. In the rest of the paper, we
will refer to such subsets as spaces. By a trajectory of a
musical fragment spanning beats k through l in the
space (S, D1, D2), we mean a sequence vk, . . . , vl, where
vi¼hS(ti), D1(ti), D2(ti)i (and analogous for other
spaces). In the current experiment, we compare the six
(redundant) spaces S, D1, D2, (S, D1), (D1, D2), and
(S, D1, D2).

Another issue is the relative size, position, and
orientation of phase-plane trajectories. If we treat
phase-plane trajectories as geometrical shapes annotated
with landmark points, then a natural method of
comparison would be by Procrustes analysis (Goodall,
1991). This method is common in biomedical shape
comparison, and consists in applying scaling, translation,
and rotation transformations to one shape to make it
maximally similar to another, before calculating a
measure of distance between the landmark points that
define the shapes. The interpretation of phase-plane
trajectories as geometrical shapes however does not fit
completely with the musical aspects that the trajectories
represent. In particular, using a distance measure that is
rotation-invariant would imply that, for example, a
ritardando (a lower hemi-circle) could be matched
perfectly to an accelerando (an upper hemi-circle), which
is obviously undesirable. On the other hand, translation
and scaling invariance may be sensible characteristics of
a distance measure, since they allow us to ignore
differences in the absolute range and the ‘intensity’ of
gestures. The translation and scaling of trajectories to a
common position and size is equivalent to normalization
of the data.

The above steps in the construction of the final data
representation are shown schematically in Figure 3.

5The pieces are selected to contain at least three occurrences of
a single musical fragment.
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4.1.2 Musical material

For this experiment we used four distinct fragments from
three classical piano pieces from the romantic period, as
shown in Table 1. We manually selected score fragments
that occurred identically at least three times throughout
the piece. An additional criterion was that the fragments
be of reasonable duration, roughly speaking two bars or
longer, to avoid fragments that are too short to extract
any meaningful expressive information. All timing data
was extracted by manual annotation from commercial
CD recordings of performances by professional pianists.
The performances of Schumann’s piece (Träumerei) are
the recordings used by Repp (1992).

4.1.3 Evaluation of clustering

For each data set, all pairwise distances are computed
between the data instances. The distance between a pair
of trajectories is calculated as the root summed square
(RSS) of the pairwise differences of the pairs of trajectory
points (all trajectories in a data set have the same number
of points). We are primarily interested in how the
organization of trajectories of different performers is,
given a particular choice of representation, and the RSS
distance measure. Figure 4 shows an example with two
imaginary organizations for three occurrences of a

musical fragment performed by two different performers
(A and B). Note that in the organization on the left, it
will be easy to separate the data instances by performer
based on the distance measure, whereas in the organiza-
tion on the right, it will be impossible. To quantify this,
we introduce the notion of inter-intra performer gap
(IIPG). For a given performer k, this quantity is the
average distance between k’s trajectories and the
trajectories of other performers, minus the average
distance among k’s own trajectories.

More formally, let hk, ni be the data instance
containing the trajectory of the k th performer playing
the nth occurrence of the musical fragment, and let dC
(hk, ni,hl, mi) be the distance between data instances
hk, ni and hl, mi in space C. Then, the IIPG of the k th
performer in C is defined as:

IIPGCðkÞ ¼
2

NðN% 1Þ
XN

n¼2

Xn%1

m¼1

%dcðhk; ni; hk; miÞ

þ 1

K% 1

XK

l6¼k

dCðhk; ni; hl; miÞ; ð7Þ

where K is the number of different performers in the data
set, and N is the number of occurrences of the musical
fragment. Rather than looking at the IIPG of individual
performers, we will focus on the suitability of different

Table 1. Description of the data used.

Composer, Piece Fragment name
Fragment start

positions (in beats)
Frag. length
(in beats)

Cumulative frag.
length (% of piece)

No. of
performances

Chopin, Op. 10, No. 3 A 3 (repeated at 67, 491) 16 +16% 8
Chopin, Op. 10, No. 3 B 20 (84, 508) 22 +21% 8
Chopin, Op. 28, No. 17 A 14 (62, 206, 434) 35 +26% 10
Schumann, Op. 15, No. 7 MG1/2 3 (35, 67, 99, 131, 163) 9 +28% 28

Fig. 4. Left: small intra-performer distances and large inter-performer distances (that is, high intra/inter performer gap). Right: intra-
performer and inter-performer distances are similar (that is, low intra/inter performer gap).

Fig. 3. Processing steps from measured data to the data used for clustering.
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spaces for performer identification. Therefore, we ad-
ditionally define the IIPG of a space C as the average
IIPG per performer:

IIPGC ¼ 1

K

XK

k¼1

IIPGCðkÞ: ð8Þ

To be able to compare IIPGs across spaces and data sets,
we normalize the distances within each space and data
set.

Figure 5 shows a dendrogram, as obtained by a
complete link hierarchical clustering of a data set, based
on the distances between data instances. In the dendro-
gram, two sets of instances S1 and S2 are joined by a
node at a height h precisely when RSS (si, sj) )h for any
si 2 S1, and sj 2 S2.

The dendrogram is evaluated by comparing it to the
performer partitioning and the order-of-occurrence
partitioning, respectively. This is done by computing an
F-score for each node in the dendrogram, and selecting
the subset of nodes that has the highest average F-score,
and partitions the data (that is, each data instance
belongs to exactly one node).

The F-score of a given node C is computed as follows.
Let i be the most frequent label in C , and let 1) ki) jCj
be the number of occurrences of i in C. Furthermore, let

Ki be the total number of instances with label i in the data
set. Then, we define the F-score of C in terms of its
precision and recall:

precðCÞ ¼ ki
Cj j

ð9Þ

recðCÞ ¼ ki
Ki

ð10Þ

F-scoreðCÞ ¼ 2 * precðCÞ * recðCÞ
precðCÞ þ recðCÞ

¼ 2ki
Cj j þ Ki

: ð11Þ

These definitions are in accordance with the standard
interpretations of precision, recall, and F-score, used in
information retrieval, except for the fact that the label i is
not fixed in advance, but is chosen to be the label that for
a given C maximizes prec (C). Since we have Ki¼Kj for
any pair of labels (i, j), the label that maximizes prec (C)
also maximizes rec (C), and therefore F-score (C).

4.2 Results and discussion

With the definition of the F-score for dendrogram nodes
(i.e. subsets of the data set), and the mean F-score per
node for partitionings of the data set, we have a means of

Fig. 5. Dendrogram obtained from hierarchically clustering the Chopin, Op. 10, No. 3 (fragment B) performance data set. The
clustering is obtained by considering trajectories in the space D2, the second derivative of tempo. The parameter l for controlling
the roughness penalty is optimized for performer identification (l¼ 1074); the labels show performer/year and order-of-occurrence;
the circled nodes jointly form the clustering with maximal average cluster F-score, given the performer/year labels.
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quantifying how successful a given phase-plane repre-
sentation is for the performer and order-of-occurrence
identification tasks, respectively. This enables us to
systematically evaluate different representations.

Figure 6 shows the evaluations of different representa-
tions for the Schumann data set. Each plot shows the
mean cluster F-score of the optimal partitioning as a
function of spline smoothness. Each curve represents a
different space (see the caption in Figure 6 for a legend).
The top row shows the results when the clustering is
optimized for the performer identification task, the
bottom row shows the results when clustering is
optimized for the order-of-occurrence task. Finally, the
plots in the left column were generated using non-

normalized trajectories, and plots in the right column
using normalized trajectories.

The figure presents a few interesting outcomes of the
experiment. Most notably, the choice of the degree of
smoothing substantially affects the accuracy for both
identification tasks. Moreover, the optimal degree of
smoothing is lower for performer identification than for
order-of-occurrence identification. Whereas performer
identification benefits from medium levels of smoothing
(l values in the range 1076 – 1072), order-of-occurrence
identification works best with high degrees of smoothing
(l values close to 104). This difference is confirmed with a
t-test on l values weighted by mean cluster F-score
(t¼ 3.2176; p5 0.001).

Fig. 6. Mean cluster F-scores as a function of spline smoothness, for different combinations of tempo and derivatives. Legend: a:
tempo (S); b: first derivative of tempo (D1); c: second derivative of tempo (D2); d: (S, D1); e: (D1, D2); f: (S, D1, D2); horizontal lines
indicate estimated baseline F-score (solid) with standard error (dashed). Left column: non-normalized trajectories; right column:
normalized trajectories; top row: performer identification; bottom row: phrase-occurrence identification.
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As an example of this effect at the level of individual
phase-plane trajectories, consider the four plots in
Figure 7. The figure displays the trajectories of two
pianists, Ashkenazy (solid curves), and Richter (dashed
curves), both playing the first and second instances of the
same fragment (left and right columns respectively). The
trajectories are plotted in the first-order phase-plane,
using low and high levels of smoothing (top and bottom
row respectively). Notice how, with little smoothing (top
row), each of the two pianists has its own characteristic
phase-plane form, which is relatively constant through-
out the two occurrences of the same fragment. Richter
plays the fragment with more pronounced gestures, while
keeping a fixed base tempo, whereas Ashkenazy slightly
increases tempo throughout the fragment in three less
pronounced gestures. Unsurprisingly, when l is increased
such that any note level detail of the timing profile is
eliminated (bottom row), the differences between the two
pianists fade. Instead, it seems that the trajectories now

show mainly a distinction between the first occurrence
(left plot) and the second (right plot).

This result suggests that the aspects of phase-plane
trajectories that are performer specific are in the details,
whereas the global form of the trajectory is rather
determined by the score context. This claim is only
tentative however, because it must be borne in mind that
the issue of different but not performer-specific perfor-
mance strategies, has not been taken into account in this
study. Such strategies may influence either the detailed or
global form of trajectories, or both.

Returning to Figure 6, a slight effect of normalizing
on mean cluster F-score can be observed. For performer
identification, normalization of trajectories increases
mean cluster F-scores over the whole range of l.
Interestingly, in the case of order-of-occurrence identifi-
cation, results are better using non-normalized trajec-
tories. Both effects are present when the results of all four
data sets are taken together. A paired Wilcoxon signed

Fig. 7. First-order phase-plane trajectories for Ashkenazy 1972 (solid curves), and Richter 1988 (dashed curves) recordings of Chopin,
Op. 10, No. 3, fragment A. The numbers along the trajectories indicate the starting of consecutive bars. Left column: first occurrence
of fragment; right column second occurrence; top: unsmoothed trajectories; bottom: smoothed trajectories.
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rank test revealed higher accuracies for normalized
trajectories in performer identification (V¼ 41587,
p5 0.05), and higher accuracies for non-normalized
trajectories in order-of-occurrence identification (V¼
58743, p5 0.0001).

The fact that order-of-occurrence identification is
more accurate with non-normalized trajectories indicates
that absolute tempo is a relevant factor for this task. This
is plausible, since the higher level musical structures of
which the repeated fragments form part, may impose an
evolution of the tempo curve that differentiates tempo
between its constituent structures.

Lastly, we consider the effect of the choice of space (the
combination of tempo and its derivatives to represent
trajectories). The plots in Figure 6 show that for the
Schumann data set, the different spaces (curves a to f)
follow roughly the same trends. A notable exception is the
tempo-only space (curve a) in the non-normalized
condition for performer identification, shown in the top
left plot. For moderate degrees of smoothing, which tend
to be optimal for performer identification, the tempo-only
representation yields substantially lower F-scores. This
effect is also observed in the other data sets. The top right
plot in Figure 6 suggests that normalizing trajectories
partly alleviates this, since curve a is slightly raised.

Upon inspection of the joint data sets however, it
turned out that even in the normalized condition, the
spaces that include derivatives on average lead to
higher F-scores. This is confirmed by an analysis of
variance, which showed an effect of space on the size
of IIPG.6 We use Tukey’s Honest Significant Differ-
ence test as a multiple comparison procedure to find
the differences in IIPG as an effect of space. For all
spaces involving derivatives of tempo except (S, D1),
this test shows a significant (a¼ 0.05) increase in IIPG
with respect to the tempo-only space. The results of
the test are summarized in Table 2. Between spaces

involving tempo derivatives no significant differences
were found (these comparisons have been omitted in
Table 2).

5. Conclusions and future work

Phase-plane representations of expressive timing of
music performances include tempo derivatives in addi-
tion to tempo itself. Such representations highlight the
dynamic aspects of expressive timing. A consequence of
this is that functions that look similar in time series plots,
such as a parabola and a semi-period of a simple
harmonic oscillation, have qualitatively different phase-
plane trajectories, since their derivatives are different. As
such, phase-plane trajectories may suggest a particular
class of functions that could fit a particular tempo curve.
This can be a benefit in the modelling of expressive
timing, as in Repp (1992), Todd (1985), and Friberg and
Sundberg (1999).

In addition, different representations of phase-plane
trajectories were compared experimentally. Results
indicate that phase-plane trajectories are most performer
specific when moderate degrees of smoothing are used,
and normalization is applied. Highly smoothed and non-
normalized trajectories on the other hand, are more
indicative of the order of occurrence of the fragment in
the musical piece. The experiment also showed that
considering tempo derivatives in addition to tempo in
general facilitates the distinction between performers
based on their performances.

In conclusion, we argue that phase-plane representa-
tions of expressive timing are an interesting alternative to
conventional time-series plots of expressive timing
information. Not only do they allow for intuitive
visualizations of expressive gestures, but they also seem
relevant for the characterization of the timing of
individual performers.

In this study, phase-plane trajectories were compared
using simple root sum squared differences of trajectory
coordinates. A more advanced method of comparison

Table 2. Results of a Tukey HSD test of the intra/inter performer gap (IIPG) for tempo-only representation (S), versus representations
that include tempo derivatives; considered trajectories are normalized; roughness penalties of considered trajectories range from 1076

to 1.

95% conf. interv.

space A space B IIPGA IIPGB IIPGA–IIPGB lower upper p

D1 S 0.843 0.679 0.164 0.026 0.302 0.009
D2 S 0.849 0.679 0.171 0.033 0.308 0.006
(S, D1) S 0.815 0.679 0.136 70.002 0.274 0.056
(D1, D2) S 0.883 0.679 0.204 0.066 0.342 0.000
(S, D1, D2) S 0.880 0.679 0.201 0.063 0.339 0.000

6The analysis was performed on the IIPG measure rather than
F-score since the F-score data, by repeated summarizing of
intermediate results, is too sparse to make a reliable claim.
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would do more justice to the gestalt aspect of trajectories,
for example through a qualitative characterization of
trajectories, ideally in terms of a small set of prototypical
forms. Such an alphabet of phase-plane trajectory
fragments may be obtained in a data-driven way, as in
Widmer et al. (2003).
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