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This article presents research towards automated
computational analysis of large corpora of music per-
formance data. In particular, we focus on between-
hand asynchronies in piano performances—an
expressive device in which the performer’s timing
deviates from the nominally synchronized timing
of the score. Between-hand asynchronies play an
important role, particularly in Romantic music,
but they have not been assessed quantitatively
in any substantial way. We give a first report on
a computational approach to analyzing a unique
corpus of historic performance data: basically
the complete works of Chopin, performed by the
Russian-Georgian pianist Nikita Magaloff. Corpora
of that size—hundreds of thousands of played notes
with substantial expressive (and other) deviations
from the written score—require a level of automa-
tion of analysis that has not been attained so far.
We describe the required processing steps, from con-
verting scanned scores into symbolic notation, to
score-performance matching, definition, and auto-
matic measurement of between-hand asynchronies,
and a computational visualization tool for exploring
and understanding the extracted information.

Temporal asynchronies between the members
of musical ensembles have been found to exhibit
specific regularities: The principal instruments in
classical wind and string trios tend to be 30–50 msec
ahead of the others (Rasch 1979); soloists in jazz
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ensembles show systematic temporal offsets relative
to the rhythm group (Friberg and Sundström 2002).
As the two hands of a pianist are capable of producing
different musical parts independently (Shaffer 1984),
differences in the timing organization may be
utilized as a means for artistic expression. Typically
such asynchronies include bass anticipations, where
the bass tone precedes the other notes by 70 msec
or more (Vernon 1936; Goebl 2001) or sequences of
right-hand lags in jazz piano solos, where the soloist
delays the onsets of a series of notes relative to
the beat (played, e.g., by the left-hand chords, bass,
and drums) only to come back into time again (e.g.,
found in Red Top in the Erroll Garner Trio album
Concert of the Sea from 1955). A similar effect
is documented for the Classical–Romantic piano
repertoire, where particularly Chopin recommends
the right hand to take as much temporal freedom
as desired, while the left hand is instructed to
keep—like a conductor—a strict timing (“tempo
rubato in the earlier meaning,” Hudson 1994).
Furthermore, the melody voice in expressive piano
performance (the most salient voice, usually the
highest-pitched part) has been found to occur around
30 msec earlier than the tones of the other voices
(melody lead, Palmer 1996); this effect, however,
is associated with differences in the loudness of
the tones and is best explained as an artifact of the
different key and hammer velocities (Repp 1996;
Goebl 2001). In particular, melody lead within the
same hand is caused by velocity differences; the
within-hand asynchronies are also usually smaller
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than those found between the hands (Repp 1996;
Goebl 2001).

Thus, asynchronies in piano performance contain
a wealth of potentially expressive features and at the
same time reflect quite subtle effects such as melody
lead. This article seeks to investigate particularly
the more expressive aspects of the between-hand
asynchronies, such as bass anticipations and re-
gions of tempo rubato in the earlier meaning. We
present preliminary results on the between-hand
asynchronies in Magaloff’s Chopin to demonstrate
the variety of insights that such large corpora can
offer. Toward the end of the article, we attempt to
model these asynchronies on the basis of mostly
local score features. Finally, we discuss the future
pathways of this research endeavor and its poten-
tial for computational modeling and musicological
investigation.

The Chopin Corpus

The analyzed Chopin corpus comprises live con-
cert performances by the Georgian-Russian pianist
Nikita Magaloff (1912–1992), who played almost
the entire solo repertoire of Chopin in a series of
six recitals between January and May 1989 at the
Mozart-Saal of the Wiener Konzerthaus in Vienna,
Austria. This concert hall provides about 700 seats
(www.konzerthaus.at) and ranks among the most
distinguished halls in Vienna. In this unprecedented
project, Magaloff, by that time already 77 years old,
performed all the works of Chopin for solo piano that
appeared in print during Chopin’s lifetime, keeping a
strict ascending order by opus number, starting with
the Rondo, op. 1, up to the three Waltzes, op. 64,
including the 3 sonatas, 41 mazurkas, 25 préludes,
24 études, 18 nocturnes, 8 waltzes, 6 polonaises,
4 scherzos, 4 ballades, 3 impromptus, 3 rondos,
and other works (Variations brillantes, Bolero,
Tarantelle, Allegro de Concert, Fantaisie, Berceuse,
Barcarole, and Polonaise-Fantaisie). The works
not played were either piano works with orchestra
accompaniment (op. 2, 11, 13, 14, 21, and 22), works
with other instruments (op. 3, 8, and 65), or works
with higher (op. posth., starting from op. 66, the
Fantaisie-Impromptu) or no opus numbers. (It is

only recently that several additional recordings were
discovered, which Magaloff had played as encores;
they have not yet been included in the corpus. Those
are: Fantaisie-Impromptu op. 66, Variations “Sou-
venir de Paganini,” Waltz in E minor, Waltz in E-flat
major, Ecossaises op. 72, no. 3, Waltz op. 69, no. 1.)

Magaloff performed this concert series on a
Bösendorfer SE computer-controlled grand piano
(Moog and Rhea 1990) that recorded his perfor-
mances onto a computer hard disk. The SE format
stores the performance information in a symbolic
format with high precision (see Goebl and Bresin
2003), providing detailed information on the onset
and offset timing of each performed note (i.e., key
depression), the dynamics in terms of the final
hammer velocity of each note, and the continuous
position for the three pedals (right: sustain, middle,
left: una corda). The entire corpus comprises more
than 150 individual pieces or movements, over
336,000 performed notes, or almost 10 hours of
continuous performance.

Computational Analysis of Performance Data

Score Extraction

In order to analyze symbolic performance data
automatically, the performances have to be con-
nected to the corresponding musical scores (score-
performance matching). As symbolic scores were
not available for the complete work of Chopin,
the first step was to extract this information from
the printed music scores. We used music recogni-
tion software (SharpEye 2.63 by Visiv) to convert
the 946 pages of scanned music into a MusicXML
(http://recordare.com) representation. Extensive
manual verification of the conversion process was
necessary to eliminate a considerable number of
conversion errors, as well as scripted post-correction
of conversion incapabilities of the used software
(ottava lines, parts crossing staves, etc.).

Score–Performance Matching

The symbolic MusicXML scores were then matched
on a note-by-note basis to the Magaloff performances
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employing a semi-automatic procedure. The match-
ing algorithm is based on an edit-distance metric
(Mongeau and Sankoff 1990). The matching results
were inspected and—if necessary—corrected manu-
ally with an interactive graphical user interface that
displays the note-by-note match between the score
information and the performance. All incorrectly
played notes or performed variants were identified
and labeled. (This, by the way, will also make it
possible to perform large-scale, in-depth analyses
of the kinds of errors accomplished pianists make.
First results of such an analysis are described by
Flossmann, Goebl, and Widmer [2009].)

Defining and Measuring Asynchronies

Our aim in the present study was to analyze the
between-hand asynchronies of notes that are notated
as nominally simultaneous in the score (that is, all
tones belonging to the same “score event”). To that
end, we first needed to compute these asynchronies
automatically from the corpus.

The staff information of the musical notation
(upper versus lower staff) was used to calculate the
between-hand asynchronies. As the performance
data do not contain information as to what hand
played what parts of the music, we assumed that
overall the right hand played the upper staff tones
and the left hand the lower. Certainly, there are
numerous passages where this simple assumption
is wrong or not likely to be true (as there is no
information about the fingering or “handing” of
Magaloff’s performance), but given the sheer size of
the data set, the potential bias may be tolerable.

Therefore, we computed a between-hand asyn-
chrony for a given score event by subtracting the
(averaged) onset times of the upper staff from the (av-
eraged) onset times of the lower staff (“lower minus
upper”). Averaging the note onsets within chords
is reasonable, as the within-hand asynchronies are
usually smaller (including the restricted melody
lead effect, see Goebl 2001) than between-hand
asynchronies. Following this computation (“lower
minus upper”), positive asynchrony values indicate
that the upper-staff or right-hand notes are early,
and negative numbers indicate that the lower-staff
(left hand) notes are early.

All notated arpeggios, ornaments, trills, or grace
notes were excluded from our preliminary data
analysis (about 10 percent of the entire data),
as these cases feature special and usually larger
asynchronies than “regular” score events. These
special cases deserve a separate detailed analysis
that would exceed the scope of the present article.

Tool for Visualization

For a first intuitive analysis and understanding of
this huge amount of measurement data, adequate
visualization methods are needed. Thus, we devel-
oped a dedicated computational visualization tool.
A screenshot is presented in Figure 1. It comprises
three panels arranged vertically, sharing the same
time axis. The upper panel shows the individual
tempo curves of the two hands (in case of multiple
onsets in an event within a staff, the average onset is
taken to compute tempo information). The middle
panel shows the average asynchronies for each score
event that contained simultaneous notes in each
staff. The lower panel, finally, features a piano-roll
representation of the performances with nominally
simultaneous notes connected by (almost) vertical
lines. The color (not shown here) of these lines is
either red (indicating a right-hand lead) or green
(indicating a left-hand lead). The gray area in the
middle panel marks a range of ±30 msec within
which asynchronies are not likely to be perceived
as such (Goebl and Parncutt 2002). Furthermore,
the tool indicates occurrences of bass anticipa-
tions (“B.A.,” lower panel) and out-of-sync regions
(horizontal bars, middle panel); see the following
descriptions.

First Results

In the following, we present some preliminary
results that should demonstrate the scope of results
that such large-scale analyses yield.

Overall Asynchronies

The distribution of all asynchronies between the
two hands is shown in Figure 2, including the
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Figure 1.
Screenshot of the visualization tool showing bars 50–54 of Chopin’s Nocturne op. 27, no. 2, as performed by Nikita
Magaloff, and the corresponding score excerpt. The upper panel shows the tempo curves of the two hands (where,
for computing the tempo, we average all note onset times within a hand), the middle panel shows the mean
asynchronies for events that contain simultaneous notes (positive values indicate an early right hand; negative an
early left hand; the central area sketches the ±30-msec region around zero), and the lower panel features a piano
roll representation. All nominally simultaneous notes are connected by (almost) vertical lines that are plotted in
red when the melody (right hand) was ahead, green when it lagged. The black horizontal bars in the middle panel
depict the extent of out-of-sync-regions (see the text for more information). The authors prepared the score excerpt
by using notation software and following the Henle edition.

mean and the mode value. The positive mode value
reflects an overall tendency for the right hand to
be early, which is most likely attributable to the
well-understood “melody lead” effect (Goebl 2001).
Moreover, the mean value is slightly below the
mode value reflecting a slightly skewed histogram
towards the left side. Particularly in the region of
–100 to –300 msec there is a slight increase of values,
most likely due to frequent bass anticipations (thick
line below main histogram).

The asynchrony distributions of the individual
pieces vary considerably and depend on the specifics
of the pieces. The pieces played most synchronously
by Magaloff are those that feature predominantly
chordal textures (op. 40-1, 28-9, 28-20, 10-2, see Fig-
ure 3); the least synchronous pieces are those having
predominantly textures with a single melody over
a continuous accompaniment that leave more room
for artistic interpretation (see the subsequent discus-
sion of the “tempo rubato in the earlier meaning”).
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Figure 2. Histogram of the
signed between-hand
asynchronies per event
over the entire Chopin
corpus (displaying a total
of 63,344 asynchronies
using a bin size of 1 msec).

The y-axis is plotted
logarithmically to
emphasize the distribution
of bass anticipations,
which are drawn by an
additional thicker line
below the left-hand

portion of the histogram
(see the section Bass
Anticipations in the text
for a definition of this
term).

There is a significant effect of speed within
the investigated pieces. Figure 3 shows the mean
absolute (unsigned) asynchronies per piece (a) and
the standard error of the asynchronies (b) against
the average event rate (in events per second). An
event rate value was computed for each score event
by counting the performed events (chords) within a
time window of 3 seconds around it. The average
event rate is the piecewise mean of those values. We
found that the faster the piece, the lower the absolute
asynchrony and also the lower the variability of the
asynchronies, which suggests that Magaloff uses
more room to employ “expressive” asynchronies in
slower pieces than in faster pieces.

We also examined potential meter effects on
the between-hand asynchronies. Chopin’s music
consists—with only a few exceptions—of four dif-
ferent types of meter: 2, 3, 4, and 6 beats per bar
(if we consider only the numerator of the time
signature). The majority of pieces are in a triple
meter (3 beats per bar): all the mazurkas, waltzes,
polonaises, and scherzos, some preludes, and some
sonata movements, as well as other pieces. The
other three meter categories (2, 4, and 6 beats per
bar) contain roughly equal numbers of pieces, as
well as roughly equal numbers of performed notes.
The majority of the nocturnes have 4 beats per
bar, the majority of études 2 beats per bar. In Fig-
ure 4, the mean asynchronies and the 95-percent
confidence intervals are plotted against metrical

position. The asynchronies that occur between full
beats are treated as intermediate categories, because
they usually involved fewer notes than those on full
beats. They are plotted halfway between the beats
in Figure 4. The metrical profiles show a slightly
arched shape with a tendency to exhibit higher
(positive) asynchrony values in the inner regions
of the bar. However, even though the differences
reach statistical significance (due to the extremely
high numbers of data points), this tendency might
be imposed by the larger negative outliers on
the strong beats (melody delayed or bass antici-
pated). This special case is further examined in the
following.

Bass Anticipations

A bass anticipation is labeled as such when the
lowest tone of a lower-staff score event is more than
50 msec ahead of the mean onsets of the upper-staff
tones of that event. The overall distribution of
the bass leads is shown in Figure 2 (lower plot on
the left side of the histogram), and the individual
pieces are shown in Figure 5. The proportion of bass
anticipations is lowest on average for the études,
the preludes, and the rondos (well below an average
of 1 percent of simultaneous events), and highest in
the mazurkas and the nocturnes (almost 2 percent).
Bass anticipation ratios of zero were found for the
preludes (16 out of 25 did not contain any bass
anticipations) and the études (7 of 24).

An exception is the Prelude op. 28, no. 2, which
exhibits both the highest mean asynchronies and the
largest proportion of bass anticipations among all
pieces (clearly visible in Figures 3 and 5). This very
slow and short piece features a constant 1/8-note
accompaniment with a single-note melody above it.
The sad character and the slow tempo may be the
reason for the high temporal independence of the
melody in Magaloff’s performance.

There is also an effect of event rate, suggesting
that bass leads become less frequent as the tempo
of the pieces increases (see Figure 5). Again, slower
pieces leave more room for expressive freedom than
do faster pieces.

To further analyze the occurrences of bass
anticipations, we categorized all score events
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Figure 3. Absolute
(unsigned) asynchronies
(a) and standard error (SE)
of the mean asynchronies
(b) against the mean event

rate per piece. The
hyphenated numbers refer
to the opus numbers of the
respective pieces.

bar-wise into first beats, on-beats (all beat events
except the first beat), and off-beats. It turns out
that metrical position has a significant effect:
The highest number of bass anticipations fall on
the first beat (1.80 percent of all simultaneous
events); other on-beat events receive the next-
highest number of bass anticipations (1.48 percent
of simultaneous events), and 0.66 percent of si-
multaneous events are off-beat events with bass
anticipations. This suggests that Magaloff uses bass
anticipations to emphasize predominantly strong
beats.
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Error bars denote 95
percent-confidence
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The Earlier Type of Tempo Rubato

An expressive means that has a long performance
tradition is the “tempo rubato in the earlier mean-
ing” (Hudson 1994). It refers to expressive temporal
deviations of the melody line, while the accom-
paniment, offering the temporal reference frame,
remains strictly in time. Chopin in particular often
recommended that his students keep the accom-
paniment undisturbed like a conductor, and give
the right hand the “freedom of expression with
fluctuations of speed” (Hudson 1994, p. 193). In
contrast, the “later meaning” of tempo rubato was
used more and more to refer to the parallel slowing
down and speeding up of all parts of the music (today
more generally referred to as expressive timing). In
expressive performance, both forms of rubato can be
present simultaneously and can be used as means
for deliberate expression.

We aim at identifying sequences of earlier tempo
rubato automatically from the entire corpus. To
extract overall information about sequences where
Magaloff apparently employed an earlier tempo
rubato, we count the out-of-sync regions of each
piece. An out-of-sync region is defined as a sequence
of consecutive asynchronies, each of which is larger
than the typical perceptual threshold (30 msec), but
only if the sequence contains more elements (events)
than occur per second in that piece on the average
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Figure 5. Proportion of bass
anticipations against
mean event rate per piece.
Zero proportions
(34 pieces) were excluded
from the calculation of the
regression line.

(i.e., more than 2–13 performed notes, depending on
the piece; see the x-axis information of Figure 6).
We link the search for out-of-sync regions to the
average performance tempo (event rate), because
faster pieces usually contain many shorter runs that
are out-of-sync, but due to the fast tempo, these
regions extend only to some fraction of a second.
The region counts would otherwise be strongly
biased towards higher figures at faster tempi.

On average, a piece (or movement, in the case of a
sonata) contains 1.8 such regions. The piece category
with the lowest numbers are generally the waltzes,
preludes, and études (below 1), and the pieces with
the highest counts are by far the nocturnes (on
average well over 5), suggesting that particularly
this genre within Chopin’s music leaves the most
room for letting the melody move freely above the
accompaniment. This pattern is not an artifact of
piece length; it remains the same when the out-of-
sync region counts are normalized by the number
of asynchronous events. Figure 6 shows the number
of out-of-sync regions per piece against the average
event rate of the piece. It demonstrates that faster
pieces contain fewer such regions, suggesting that
this form of tempo rubato is bound to slower and
medium tempi (such as the nocturnes, the slowest
category of piece in the Chopin corpus). This overall
finding is not surprising; the earlier tempo rubato is
expected to be found more often in melodic contexts
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Figure 6. The number of
out-of-sync regions (earlier
tempo rubato) per piece is
plotted against the event
rate.

than in virtuoso pieces, as the historic origins of the
earlier tempo rubato go back to vocal music.

To illustrate, the example of the visualization tool
presented in Figure 1 is briefly discussed. It shows
an excerpt (bars 50–54) of the Nocturne op. 27,
no. 2 (including the score of the corresponding
bars). This example contains two runs of tempo
rubato as determined by the algorithm (indicated
by horizontal bars in the middle panel). The first
starts on the downbeat of bar 50, where Magaloff
delayed the melody note by 265 msec, only to be
early over the next few notes of the descending
triplet passage. The beginning of the 48-tuplet figure
(which is interpreted as sixteenth-note triplets as
well) also leads the accompaniment. Towards its
end, the second run of tempo rubato as determined
by our algorithm begins, just when Magaloff starts
to make the melody lag behind the accompaniment.
This lag coincides with a downward motion and a
notated decrescendo. The following embellishment
of the B-flat (notated as thirty-second notes and
thirty-second-note triplets) is again clearly ahead
of the accompaniment. The first note of the next
phrase is also ahead, potentially to underline the
notated anticipation of the upcoming harmony
change towards E-flat minor.

Overall, many occurrences of tempo rubato in
its earlier meaning can be found in Magaloff’s per-
formances, suggesting that he may have used these
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runs of between-hand asynchronies as an expressive
device. However, we do not have any information
about his particular intentions regarding this param-
eter of expression. Moreover, we do not have com-
parable on-stage professional performance data to be
able to make statements as to whether Magaloff’s
strategy differs from other performers’ strategies.

Modeling of Between-Hand Asynchronies

In the previous section, we have described the variety
of between-hand asynchronies across Magaloff’s
performance of Chopin’s works. Here, we attempt
to model Magaloff’s asynchronies and evaluate the
degree to which these asynchronies can be predicted
from a battery of (mostly local) score-based features.
A probabilistic model (see Lauritzen 1996) was
used for learning the dependency of between-hand
asynchronies on characteristics of the score. The
system, as described in Flossmann, Grachten, and
Widmer (2009), already proved suitable for a similar
task: to learn to predict tempo, loudness, and
articulation from score features for the purpose
of performance rendering (Widmer, Flossmann,
and Grachten 2009). As the system is designed to
process melody notes only (although the entire
score is known), the asynchrony value for a melody
note was calculated by averaging the asynchronies
between the left and right hands at the note’s
onset (as described in the section Defining and
Measuring Asynchronies). For melody notes that
had no nominally simultaneous score event in the
lower staff, a corresponding lower-staff onset value
was linearly interpolated from the surrounding
(lower-staff) notes.

The score features consist of the following:
metrical position of a score event within a bar; a
binary feature per staff (upper and lower) indicating
whether the event consists of one note or more than
one at a time; the note density relation between
upper and lower staff (describing the ratio of number
of onsets in the upper staff versus those in the
lower staff); the pitch interval from the current
melody note to the following one; the ratio of the
score durations of two successive melody notes; and
finally a notion of melodic closure derived from an

Implication-Realization (IR) analysis of the data,
based on Narmour’s melodic analysis of musical
structures as described by Narmour (1990) and
computed automatically (Grachten 2006). With the
exception of the IR analysis, where one value may
relate to observations from several bars, all features
describe local characteristics of the score. The data
set was grouped by the number of beats per bar, as in
the metrical analysis (see Figure 4). The correlation
between the predicted and the actual asynchrony
values is used as a measure of the quality of the
prediction. The predictive quality of a single feature
or a combination of several features is indicated by
the piecewise correlations averaged over a threefold
cross-validation. For a first attempt at finding signif-
icant score characteristics, all possible combinations
of the previously mentioned features were evaluated.

Close inspection of one of the four data sets—the
pieces with two beats per bar—reveals the following.
The feature combination resulting in the highest
average correlation (0.13) consists of metrical posi-
tion, duration ratio, and note density relation. Two
pieces, the Etude op. 25, no. 11 and the Impromptu
op. 29, were predicted particularly well, with an
average correlation over all feature combinations of
0.22 and 0.29, respectively. The best results for the
two pieces are 0.32 (metrical position, multi-voice
upper/lower staff, note density relation, duration
ratio, and IR closure) and 0.48 (metrical position,
multi-voice lower staff, note density relation, and
IR closure), respectively. The data set also contained
two pieces that provided the worst results across
all feature combinations: the Prelude op. 28, no. 4
(average correlation –0.41) and the Etude op. 10,
no. 3 (average correlation –0.21). Judging by the fact
that those four pieces exhibit rather constant values
across all feature combinations, it is very likely
that there are fundamental, structural differences
responsible for the inconsistent results of the model.
Further analysis may provide clues concerning the
nature of those systematic differences.

Summary and Future Work

This article has presented a computational approach
to making large performance corpora accessible to
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detailed analysis. We defined and automatically mea-
sured between-hand synchronization in one pianist’s
performances over 150 pieces by Frédéric Chopin.
Working with data sets of that size, i.e., perfor-
mances of the complete works of a composer or sev-
eral hundred thousand played notes, requires, among
other things, effective score-performance matching
algorithms and interactive graphical user interfaces
for post-hoc data inspection and correction.

Exploratory data analysis of the between-hand
synchronization attempted to demonstrate the rich
use of asynchronies in Magaloff’s Chopin, a his-
toric document of a unique performance project.
We sketched overall trends of asynchronicity with
respect to pieces, tempo, and metrical constraints,
as well as specific cases of bass anticipations and
occurrences of tempo rubato in its earlier meaning.
Furthermore, we tried to predict Magaloff’s asyn-
chronies from a battery of (mostly local) score fea-
tures with a graphical probabilistic model. It turned
out that in certain pieces, such a simplistic model
performed well in predicting the between-hand
asynchronies, but in many others it failed to do so.

This research endeavor is preliminary as it stands.
Based on the gained insights, further efforts will be
made to model asynchronies in Romantic scores
in the spirit of Nikita Magaloff’s intrinsic style.
Training machine-learning algorithms on more-
complex, global aspects of the score as well as
meta-information about the piece might lead to
more predictive computational models of between-
hand asynchrony. Existing performance-rendering
systems can greatly benefit from such models by in-
corporating this important expressive device, which
has hitherto been neglected. Valuable musicological
insight can be gained by trying to describe parts of
the data by an interpretable rule system.

To be able to automatically examine performance
corpora of this scale offers completely new
pathways for computational musicology. Historic
documents such as the present corpus are in
manageable reach for detailed analysis. Other large
corpora, such as piano rolls of historic reproducing
pianos, or the performance database of the Yamaha
eCompetition (www.piano-e-competition.com),
will be additional sources for future large-scale
performance investigation.

Finally, detailed knowledge derived from per-
formances by established musicians will help us
develop real-time visualization tools that give in-
telligent feedback to practicing piano students to
enhance their awareness of what they are doing, and
potentially to help them improve their playing.
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