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Quantitative Methods: Motion Analysis, 
Audio Analysis, and Continuous 
Response Techniques 

Werner Goebl, Simon Dixon, and Emery Schubert 

Measurement of performance has dominated 
performance research. 
(Gabrielsson 2003) 

This chapter summarizes reeent quantitative measurement and analysis techniques of three 
domains of musical expressiveness: body motion, musical sound, and listeners' continuous 
response to musical sound. We autHne computational methods to quantitatively assess expressive 
aspects of the body movements of the performing musicians, to extract expressive information 
from the musical sound itself, aud finally to examine the perception of expressiveness through 
self-repart continuous response methods. We also expand aud add to [eeent overviews of perfor­
mance analysis techniques (e.g. Timmers and Honing 2002; Goebl et al. 2008; Goebl and Widmer 
2009; Windsor 2009). 

When considering methods of investigating expressiveness in performance, we find it helpful 
to think of music expression as occurring in three "worlds" in the Popperian sense (see Popper 
and Ecdes 1977; Parncutt 2011): first, the physical world, secondly, the experiential world, and 
thirdly, the world of thought and knowledge. This chapter considers Worlds 1 and 2- the physi­
cal and experiential- as being viewed through the lens of World 3- the measurement tools and 
ideas that aid understanding ofWorlds 1 and 2. Therefore, by physical world (World 1) we refer to 
the measurable parameters of movement and music, be they the movement of the body parts or 
properties of the recorded sound from which World 2 psychoacoustic fundamentals such as the 
tempo, pitch, loudness, articulation, and so on may be extracted. I The experiential world (World 

! Although perception of pitch, loudness, tempo, and so on may appear to be "World 2" experienced prop­
erties, the scientific reporting of these variables is usually taken directly from abstract (mathematical) 

manipulations for physical properties (fundamental frequency, intensity, timing, and so on, respectively), 

based on models which aim to mimic general, rather than specific, human response.1t serves our purpose, 
therefore, to treat these psychophysical and musical variables as being directly linked to, or drawn from, 
the physical world (World 1). The experiential world is more to do with thoughts and feelings that result 
from, say (in this case), music perception, performance, and processing. In fact, the assumption of a direct 

translation from the physical to the experiential world is itself a World 3 phenomenon, since mathematical 
relationships are called forth when converting a frequency to a pitch or intensity to loudness (products of 
ideas). For further discussion, see Archer and Elder-Vass (2012). 
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2) is at the crux of the phenomenon under investigation-since it is the sensation and construc­
tion of the expressiveness of a performance that ultimately drives what is and is not expressive, 
and that drives many investigators to examine what physical world aspects cause this experience. 
Interactions with World 3 are a necessary part of the discussion, since in the present overview this 
will refer to the language. measurement, and analytic tools used to understand musical expres­
siveness in Worlds 1 and 2. such as musical notation. spectral representation of sound. motion 
capture hardware. timing plots, statistics, and so 00. 

Importantly, developments in psychological and engineering techniques and tools have ena­
bled researchers to understand the moment-by-moment changes in expressive parameters, in 
some cases in real time. This chapter reports some of these "continuous measurement" tech­
niques. Although continuous measures have been commonplace in physical world measures 
of expression, the area is quite new in studies regarding the experiential world. Traditional 
approaches have relied on "post-listening" ratings of the musical expression perceived by the 
listener (see Chapter 16), and the present chapter investigates how such measurement can be 
done in real time. Before that, we give an overview of measurement methods for body motion 
and musical sound. 

Physical world expression measurement: motion analysis 
Most musical sounds are the result of the musician's body movements during performance. To 
give some examples, this can range from the finger and hand movements of a pianist. all the 
way to the arm, torso, or even whole-body movements of a violinist or a c1arinet player. Some of 
the movements are required to produce the intended sound (e.g. pianists' finger motion), other 
movements may convey particular meanings to the listener (e.g. head nodding), some may be 
executed to help the performer to perform the music (e.g. foot tapping), while others may not 
necessarily be required, but are usually executed by the performer (e.g. torso sway; Davidson 
1993). Likewise, recent scholarly accounts identify four different, and partly overlapping, kinds 
of movement (Dahl et al. 2010; Jensenius et al. 2010), namely sound-producing, communicative, 
sound-facilitating, and sound-accompanying movements (or gestures). A particular movement 
may weil belong to more than one category (e.g. a bowing movement might simultaneously cue 
fellow musicians). 

Sound-producing movements (or etfective gestures; Delalande 1988) are those required to 
create or control the sound (e.g. the bowing movements create the sound on a violin, and the 
left-hand fingering contr01s pitch and intonation). They are the most fundamental to music 
performance, and are also quite constrained as the goals ofthe actions (the sound) determine 
their execution. Their execution changes with the performance requirements of the score, 
sueh as the tempo (Goebl and Palmer 2009a) or dynamies (Dalla Bella and Palmer 2011). 
and also with biomechanical factors (Loehr and Palmer 2008) and the particular instrument 
played (Dah12004; Sehoonderwaldt 2009). but not with eommunicative intentions (Goebl and 
Palmer 2009b). 

All other movements of the performing musicians may be called ancillary or accompanist 
(Wanderley et al. 2005), but depending on their intention they may be differentiated further into 
communicative movements and sound-facilitating movements (Dahl el al. 2010; Jensenius 
et al. 2010). The communicative content of musicians' movements has been shown to strongly 
influence and even overrule the auditory information (Davidson 1993; Broughton and Stevens 
2009; Behne and Wöllner 2011). The visually transmitted movement information even alters the 
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usually stable perception of durations of single tones, when the production movement is changed 
(Schulz and Lipscomp 2007). This lies 10 Alfred Brendel's famous advi<;e (Brendel 1976) 10 

employ suggestive gestures when attempting to perform a crescendo on a single held chord on 
the piano (which is acoustically impossible, as a tone inevitably decays once it is played). Even 
in the absence of sound, listeners could identify basic emotions and levels of expressiveness weIl 
from the movements only (Dahl and Friberg 2007). Communication via movements also extends 
to communication betvveen ensemble members (Williamon and Davidson 2002), or more c1early 
to conductor- orchestra communication (Luck and Sloboda 2009). The other category of ancillary 
movements- sound-facilitating movements- involves movements that strengthen performance 
success (such as a constant body sway or particular breathing patterns) or that support the per­
former in their expressive statement (e.g. by head shakes or gazes; see Dahl et al. 2010, p. 54). 

Sound-accompanying movements are usually generated by a person who is not involved in 
the process of music production, but is listening to and watehing the music. Typical examples are 
dance, but also sound tracing (Leman et al. 2009) and continuous response movements (discussed 
in the next section). 

There is not always a clear distinction between these four categories of movements, as they 
strongly overlap, so that a movement might belong to multiple categories at the same time. The 
categorization of movements may particularly depend on the intended purpose of the movement 
by the performer- a variable that is usually unknown or hard to assess empirically (referred to as 
"intention" by GOd0Y and Leman 2010). Next. we explain methods to measure the physical move­
ment of the musicians' bodies during performance ("extension"), and we describe experimental 
designs aimed at disentangling sound-producing movements from the other categories. 

Methods and analysis techniques 
To assess the physical movements of performing musicians quantitatively, there are numerous 
technical options at one's disposal that will be briefly summarized here. Recent overviews of the 
technological possibilities for domains other than music are given by Zhou and Hu (2007) and 
Burdea and Coiffel (2003). 

Video-based approaches 

Video footage is easy to acquire, as current laptop computers have a webcam built in with adequate 
frame rate, resolution, and image quality; also, video cameras are inexpensive and video data care 
be easily transferred to a personal computer for playback and analysis. The most straightforward 
method of assessing musicians' movements is to video tape them and analyze the footage through 
ocular inspection. This process may be supported and made more reliable through video anno­
tation software such as AnviJ,2 ELAN,3 VARS,4 or more versatile commercial tools as Atlas.tV 
Observer6 by Noldus, or n Viv07 by QSR International. Particular gestures or movement patterns 
are identified by the researeher and labelIed in the software for later analysis. 

2 www.anvil-software.de/ 

3 http://tla.mpi.nlltools/tla-tools/elan/ 

4 http://vars.sourceforge.net/ 

5 www.atlasti.com/ 

6 www.noldus.com/human-behavior-research 

1 www.qsrinternational.com/ 
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Video data may also be used for quantitative analysis of the reeorded motion. Several approaehes 
aim to extraet complex kinematic data from video reeordings (Camurri and Moeslund 2010). 
Advaneed algorithms perform motion traeking from video and output, among others, various 
kinematic measures such as the range of motion or even the continuous two-dimensional posi­
tion of particular points. Such video-based methods have been used to recognize the gestures of 
a conductor (Kolesnik 2004). 

Three-dimensional motion capture systems 

Motion eapture systems measure the position of particular body markers in two or three 
dimensions. Extensively used in the gaming and film industry, and for gait analysis in reha­
bilitation and the military. this technology has developed tremendously over the past years. 
Common systems work optically with infra red light using either passive refleetive markers 
that are lit and filmed by multiple cameras (passive motion capture. as used, for example. 
by Vicon, Qualisys, or Optitrack by Natural Point) or aetive markers that are eonnected by 
cables and emit light themselves (such as Optotrack Certus by Northern Digital or VisualEyez 
by Phoenix Technologies). Motion capture systems deli ver discrete three-dimensional data 
for the markers that can be used for analysis. However. they are quite expensive and require 
refined technical knowledge. 

Passive motion capture systems have been used for musie research (Wanderley et al. 2005; 
Goebl and Palmer 2009b, 2013; Schoonderwaldt 2009; Dalla Bella and Palmer 2011). They are 
versatile and relatively unobtrusive due to their small markers (down to about 4 mrn in diam­
eter), not restricted by the number and size of markers, and provide accurate three-dimensional 
position data. To label each marker trajectory, the vendors provide various software solutions. 
Problems occur when markers become occluded due to an interrupted line of sight, making 
the marker trajectories discontinuous. Regardless of how weil the automated marker label­
ling works, passive systems might require several post-processing steps to obtain reliable 
three-dimensional data. 

Active systems, on the other hand, involve markers that emit infrared light that is seen 
by multiple cameras. Such systems advantageously reduce the laborious labelling step in data 
post-processing, beeause the system is able to identify eaeh marker through its unique time point 
of light emission. The output data are correctly labelIed even across missing data, and are imme­
diately ready for subsequent analysis (e.g. Wanderley 2002; Goebl and Palmer 2009b), but the 
number of markers is limited by the overall sampling rate of the system (the higher the number of 
markers, the lower the sampling rate). 

As all optical systems require line of sight of eaeh marker to a minimum of three cameras to 
triangulate their position, many music applications will run into the problem of marker occlusion. 
In the example of finger and hand motion eapture of piano performance, the fingertip markers 
in particular are "lost" when they cur! in during performance (which occurs regularly). There is 
no work-around available except for using other equipment such as magnetic motion capture 
(e.g. Liberty by Polhemus or MotionStar by Ascension Teehnologies), wh ich is usually restricted 
by small capture volumes (the space in whieh the measurements are taken), or assisting optical 
motion capture with accelerometers or gyroscopes. 

The use of motion-eapture data may range from analyzing large-scale body movements (metri­
cal embodiment; see Toiviainen et al. 2010), where sampling rates of 60 frarnes per second (fps) 
are sufficient, to detailed investigations of sound-producing gestures (e.g. touch in piano perfor­
mance; Goebl and Palmer 2008). When reeording limb movements that contain impacts with 
rigid bodies (such as the drum stick on the membrane or the pianist's finger on the key surface). 
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much higher sampling rates are required to monitor the sudden changes in movements resulting 
in large acceleration peaks (e.g. 400 fps; Dahl2004). As there is a trade-offbetween capture vol­
urne and sampling rate, researchers have to find compromises (Bouenard et al. 2011). Toiviainen 
and Burger (2011) have provided a MoCap Toolbox for Matlab featuring several standardized 
analysis steps which also imports data from WH devices. 

Sensor-based approaches 
As an alternative to the techniques just mentioned, researchers have used various kinds of sen­
sors mounted on musicians' limbs. The earliest experiment was by Otto Ortmann (1929), who 
constructed a complicated lever system to draw a pianist's leap movements on paper, and used a 
vibrating tuning fork to capture continuous key movements over time. Other detectors include 
accelerometers (MacDougall and Moore 2005), gyroscopes that measure orientation and posi­
tion in space (such as InertiaCube by InterSense or systems by XSens), or devices that combine 
different sensors (such as the CyberGlove used for finger analysis in piano performance; Furuya 
et al. 2011). 

Physical world expression measurement: audio analysis 
Various mechanical and electrical devices have been employed for measurement of expressive 
performance parameters such as timing, dynamics, and articulation, as reviewed by Goebl et al. 
(2008). Special-purpose hardware such as a computer -monitored piano or an electro-laryngograph 
can provide highly accurate measurements, but in many cases the direct monitoring of musical 
performances is not a viable option, whether due to the intrusive nature of the method, the limita­
tions of the hardware (e.g. requiring a specific instrument which is not the instrument of choice 
of the performer), or merely because the performance of interest took place in the past. Given 
the availability and modest cost of audio recordings, now numbering millions and covering more 
than a century of musical performances, there is considerable interest in analyzing the expres­
sion represented in these recorded performances (see Chapter 4). This section therefore focuses 
on the measurement of expressive performance parameters from audio recordings. Audio analy­
sis software enables research on recordings from many sources, including commercial CDs and 
archives of historical and ethnomusicological research. However, it is not witbout its limitations, 
and several methodological and technical challenges must be addressed in order to obtain useful 
data for performance analysis. 

The main issue is that of obtaining reliable measurements, for each performed tone, of param­
eters such as timing, amplitude, and pitch, which are the main attributes investigated in perfor­
mance research (Gabrielsson 2003). From these measurements, other properties such as tempo, 
dynamics, intonation, articulation, and chord asynchrony can be derived. Typically the measure­
ments are obtained by some combination of human judgement and the use of automated audio 
analysis tools in the form of computer programs that vary in sophistication from waveform visu­
alization to score- audio synchronization software. 

The simplest method is to inspect the audio waveform with computer software such as Sonic 
Visualiser (Cannam et al. 2006, 2010), and manually annotate the desired note onsets. This 
approach is labour-intensive and only suitable for simple (e.g. monophonie) musical textures in 
which onsets do not mask each other, and where the instruments of interest are percussive and 
thus have well-defined onset times. Also it is not dear how accurate this method iso Povel (1977) 
daimed a temporal precisiou of 1- 2 ms when determining note ousets "by eye" from oscillograms 
of recordings of}. S. Bach's C Major Prelude from the Well-Tempered Clavier Book 1. Examining 
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performances of the same piece, Cook (1987) estimated the timing resolution more conserva~ 
tivelyat 10 ms, using a eomputational system with manual correction of its output. Studies of solo 
piano music were performed by Repp (1990, 1992), who read off note onset times from waveform 
displays, using audio playback of short exeerpts to resolve undear cases. Excerpts leading up to 
the onset were chosen, and the end point was varied to find the latest point for which the suc­
ceeding note was not audible. For repeated measurements, mean absolute errors of 6.5 ms (Repp 
1990) and 4.3 ms (Repp 1992) were reported. For other instruments, precision values of 3 ms for 
cymbals (Friberg and Sundström 2002), 3-5 ms for jazz melody instruments and double bass 
(Ashley 2002), and 2 ms for trumpet (Collier and Collier 2002) have been reported. 

For larger-scale studies, a range of algorithms is available for automatie analysis of audio files. 
ldeally, to extract performance-related data directly from audio reeordings, we would need a fully 
automatie transcription system, but state~of-the-art systems are not yet sufficiently robust to pro­
vide the precision required for expression research (Klapuri 2004). In cases where a partial tran­
scription (e.g. ofbeat times ooIy) gives sufficient information, existing algorithms and systems can 
be used. In other cases, extra information (e.g. from scores, other recordings, or user interaction) 
is employed to bridge the gap between algorithm performance and required accuracy. 

Many automatie onset detection algorithms exist (e.g. Bello et al. 2005; Dixon 2006), several 
of which are also available in Sonie Visualiser. The aecuracy of onset detection methods varies 
greatly depending 00 the instruments playing in the reeording and the eholce of parameter set­
tings, with reported deteetion rates ranging from around 50% for the solo singing voice to weil 
over 90% for pitehed and oon~pitched percussive instruments. For example, on a large set of solo 
piano recordings (over 100 000 onsets) , 96% ofthe onsets were deteeted with an average error of 
8.8 ms (Dixon 2006). 

In some cases, not all onsets are required. For example, to analyze the evolution of the tempo. it 
is suffieient to estimate the timing of notes corresponding to downbeat locations, and ignore the 
remaining notes.8 One way to achieve this is by reeording a listener tapping along with the reeord­
ing, using for example a MIDI drum pad or a keyboard (Cook 1995; Sapp 2007). This method is 
a relatively fast way to obtain rough timing data for a single metricallevel. However, some biases 
have been observed in tapping studies, where participants underestimate abrupt tempo changes or 
systematie variations, even after repeated attempts on the same short exeerpt (Duon et al. 2006). 

An alternative approach is to use an automatie beat tracking system such as BeatRoot (Dixon 
2001a, b) to estimate the beat time~. followed by manual correction, as discussed later in this 
chapter. BeatRoot produces a list ofbeat times, from which tempo curves and other representa­
tions can be eomputed. Although it has its drawbacks, such as failure to model higher-Ievel char­
aeteristics of the music (e.g. metric hierarchy), this system has been used extensively in studies 
of musical expression (Dixon et al. 2002; Widmer et al. 2003; Goebl et al. 2004; Flossmann et al. 
2009; Grachten et al. 2009). 

Once onset or beat times have been established, other parameters ean be estimated from the seg­
ments of the recording between identified events. For example, dynamies can be approximated by 
computing the root-mean-square (RMS) energy ofthe signal over the given segment (Repp 1999), 
but this is onIy suitable for monophonie excerpts, as it does not distinguish the individual contribu­
tions of simultaneous tones. For the polyphonie ease, a teehnique such as score-informed analysis 
(Scheirer 1995) could prove helpful, but the natural variation in musieal tones precludes accurate 

• This is due to the perceptual smoothing of tempo which occurs because tempo is integrated across a certain 
time, so that sub-beat events have little influence on tbe perceived tempo. 
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estimation of individual dynamies from polyphonie mixtures (Repp 1993). Piteh estimation is a 
widely studied problem, and many algorithms have been proposed. For the monophonie ease, YIN 
(de Cheveigne and Kawahara 2002) is a robust and precise algorithm. Algorithms for polyphonie 
analysis are reviewed by de Cheveigne (2006). Most approaehes are developed for applications where 
aresolution of a semitone is considered sufficient (e.g. transcription to standard western notation), 
hut studies of temperament measure tones with accuraeies of 1 to 2 cents (hundredths of a semitone) 
(Dixon et aI. 2012). For estimating time-varying aspects of pitch, such as vibrato, Wen and Sandler 
(2007) propose an interactive approach that allows the user to select a tone on a spectrogram, after 
whieh the system calculates the frequency trajectories of all partials and displays the parameters 
of the selected tone, also allowing the user to modify the audio via changes to the parameters. The 
extraction of further parameters from audio, such as pedal information, tone duration, and articula­
tion, are considered unsolved signal-processing problems (MeAdams et al. 2004). 

Much musie analysis software exists in the form of a research prototype demonstrating an algo­
rithm, but lacking an interface for interactive editing of partially correct outputs, without which 
most software is not significantly more efficient to use than manual annotation. Exceptions include 
BeatRoot (Dixon 2001a), an automatie beat-tracking system with a graphieal user interface for 
visualizing (and sonifying) the beat times and underlying audio, allowing the user to edit the 
output and retrack the audio data based on the corrections. A similar methodologywas appHed in 
the development ofJTranscriber (Dixon 2004), written as a front end for an existing transcription 
system (Dixon 2000). The graphical interface shows a spectrogram scaled to a semitone frequency 
scale, with the transcribed notes superimposed over the spectrogram in piano-roll notation. The 
automatically generated output can be edited with simple mouse-based operations, and moni­
tored with audio playback of the original and the transcription, together or separately. A more 
recent development is Melodyne,9 a commercial audio editor that includes transcription software, 
producing western musie notation output of audio recordings. Sonie Visualiser (Cannam et al. 
2006,2010) provides a platform for analysis algorithms implemented as plug-ins, allowing a range 
of visualization, sonification, and editing options. Songle lO is a web service that allows users to 
upload musie and obtain an automatie analysis of segmentation, metrical structure, melody Hne, 
and chords, also providing visualization and editing options. Other programs that group together 
suites of audio analysis software include PRAATIl and PsySound (Cabrera et al. 2007). One dan­
ger with visua! feedback is that the type of feedback can bias the data (Dixon et al. 2006), as has 
also been noted by Leech-Wilkinson (2009): "it's a11 too easy to be led into hearing things one can 
see on a computer screen but can't perceive without one" (chapter 8.1, paragraph 25). 

The degree of manual interaction required to create accurate annotations sets a limit on the scale 
of studies that can be performed with semi-automatie methods. To improve automatie analysis, and 
thus reduce human effort in the data preparation stage, systems can take advantage of any existing 
knowledge that might be available, such as scores or other performances of the same work. Sinee 
a score is often available for the performances being analyzed, Scheirer (1995) recognized that he 
could obtain better results by incorporating score information into the audio analysis algorithm. An 
alternative approach, suitable for analyzing multiple performances of the same work, is to annotate 
one performance semi-automatieally, and then align the audio files and transfer the annotations 
automatically from the first performance to the corresponding time points in the other reeordings, 

9 www.celemony.com/cmsl 

10 http://songle.jp 

11 wwwJon.hum.uva.nl/praat/ 
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using software such as MATCH (Dixon and Widmer 2005). This approach is more efficient than 
direct annotation of all files, as the audio alignment step is generally more accurate than techniques 
for direct extraction of expressive information, so the amount of subsequent correction for each 
matched file is greatly reduced (as applied, for example, by Flossmann et al. 2009). 

Taking this idea one step further, the initial annotation phase can be avoided entirely if a digital 
score is available, in which case a mechanical performance can be synthesized from the score and 
then matched to the audio recordings. Then it is relatively straightforward to compute performance 
parameters such as tempo from the relationship between actual (performed) and nominal (score) 
durations. Several score-performance alignment systems have been developed for various types of 
music (Cano et al. 1999; Soulez et al. 2003; Turetsky and Ellis 2003; Shalev-Shwartz et al. 2004), as 
weIl as systems that can track live performances (Orio et al. 2003; Dixon and Widmer 2005), ena­
bling real-time visualization ofperformance expression or driving page-turning devices (Arzt and 
Widmer 2010). Niedermayer and Widmer (2010) consider means for improving time resolution in 
score-to-audio alignment by identifying points ofhigh confidence, caIled anchor notes, which can 
direct the alignment. Anotber development of these tracking algorithms is the "Complete Classical 
Music Companion" (Arzt et al. 2012), a computer program that, while listening to a piano through, 
for example, a laptop microphone, is ahle to identify within milliseconds what piece is being played 
by accessing a database of symbolic scores (currently the complete Mozart and Chopin works). 

Apart from analyzing audio for music expression, there is a large body of work studying music 
expression from symbolic data (i.e. MIDI or similar formats). Recently, Widmer and co-workers 
analyzed a large corpus of performances that were recorded by a computer-controIled grand 
piano live on concert stage by the renowned pianist Nikita Magaloff (Flossmann et al. 201Ob). 
They established new ways of processing the raw performance data of over 330 000 notes or some 
10 hours of music (Flossmann et al. 201Oa), to be able to perform detailed large-scale analysis 
of particular performance aspects, such as tempo rubato (Goebl et al. 2010). Such large perfor­
mance corpora are used to train computational models on stylistic particularities of individual 
performers (Widmer and Goebl 2004) that are able to generate their own renditions of previously 
unknown scores, which can be listened to, as a direct way of validating the computational models 
(Widmer and Tobudic 2003; Flossmann et al. 2011; Flossmann 2012). One of those algorithms, 
YQX, has dominated the international Performance Rendering Contest Rencon,I2 being awarded 
first prize in 2008 and 2011 (Widmer et al. 2009; Flossmann et al. 2011). 

Despite their imperfections, audio analysis tools are becorning part of the standard equipment 
of empirical musicologists (Cook 2004; Leech-Wilkinson 2009), enabling performance research 
to extend to larger data sets than it was previously feasible to examine. Current research topics 
indude the joint estimation of multiple musical parameters and the incorporation of higher-Ievel 
musical knowledge (including knowledge of scores, musical styles, and music theory) irrto analy­
sis systems. Advances in these areas would increase the robustness and accuracy of systems, and 
require less human etfort in extracting performance data from audio. 

Experiential world expression measurement: self-reported 
continuous response 
Imagine that you are listening to a piece of music, and as the music unfolds you are asked to report 
at each moment in time, when possible, how expressive the performance appears to be (e.g. by 

11 http://renconmusic.org/ 
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moving a slider accordingly}. Collecting these responses while the piece unfolds is referred to as 
self-reported continuous response, and is an alternative to more traditional ways of collecting 
explicit self-reported perceptions of musieal expression, where a rating is given along some scale 
at the end of the piece, retrospectively (e.g. Lucas et al. 1996; Crist 2000; Kinney 2004; Priee and 
Chang 2005; Fabian and Schubert 2009; Morrison et al. 2009; Fabian et al. 2010; Napoles 2013) . 

Explicit attempts to continuously rate expressiveness in music are just beginning to be explored 
(see Chapter 16), although they have their origins in the work of Clifford Madsen and colleagues in 
the late 1980s, who used a continuous response digital interface that could be configured to record 
ratings of a wide range of scale and categoryresponses (Madsen 1990; Geringer and Madsen 1996; 
Madsen et al. 2007). Devices like these require the listener to rate a parameter or general aspect of 
the musie over time bymoving a slider while listening. Manfred Clynes' sentograph (Clynes 1989, 
1995) was a device that also measured expression, although not necessarily through self-report. 
Finger movements were thought to be automatie, implicit, and biologieally pre-programmed 
(Clynes 1973). Antonio Camurri developed an analogous tool using a hand-held laser light whose 
fluctuations were measured while a participant moved the light in response to the musie or dance 
stimulus (Camurri et aI. 2006). The majority of continuous response approaches record ratings of 
emotional responses (happiness, sadness, valence, arousal, ete.) (Nettheim 1999; Schubert 1999; 
Cowie et al. 2000; Demany and Semal2002; Nagel et al. 2007; Stevens et al. 2009). and not explic­
itly musical expressiveness (for a review, see Schubert 2010). 

In this seetion, we shall focus our attention on the explicit rating of expressiveness of musieal 
interpretation. With this focus, we would expect that at certain points in a performance of some 
piece of musie, expressivity is rated as quantifiably different to that at other points in the musie 
because of some interpretative decision made by the performer/performers. It might be because 
a belting singer is providing unusual ornaments on a held note, or a violinist exercises a greater 
than expected rallentando, followed by a sudden pick up in tempo. Therefore the variations in 
rated expressiveness made by the listener could be related back to the physieal parameters of 
the performance. Because of the lack of explicit self-reported continuous response research on 
musical expressiveness, this seetion of the chapter is necessarily speculative, but points to some 
initial results, and particularly to the seminal study by Seiichiro Namba and colleagues (Namba 
et al. 1991). 

The utility of continuous expressiveness rating 
The small amount of literature that can be classified as direct self-reported continuous rating of 
expression suggests that this approach to data gathering can provide insights into the locations in 
an unfolding piece of music where expressive content is varying, high or low, and thus can provide 
explicit data on where a performance is more or less expressive. The self-report approach provides 
relief from reliance on a music score against which the expressive norm is usually compared. Here 
the expressive norm would be the underlying central tendency of participant responses across 
a wide range of performances of the same piece at each point in time. The typieal (as estimated 
from the continuous responses of several participants) "expressiveness rating" time series for one 
performance of a piece will then provide a direct experiential-world measure of expressiveness 
when compared with the overall mean time series used to generate the "norm reference" time 
series based on ratings of "all" available performances of that same piece. 

As with retrospective ratings of expressiveness, the underlying central tendency time series 
can also be used to determine whether one performance is more expressive (i.e. the expres­
siveness times series is overall higher) than the time series of another performance. The 



230 I EXPRESSIVENESS IN MU SIC PERFORMANCE 

relationship between the overall-continuous and post-performance ratings is also an area of 
interest. Current thinking suggests that post-performance ratings will be most influenced by 
and therefore correspond to high points and concluding (recency) ratings of the time-se ries 
response. In other words. many of the impressions made du ring listening seem to be for­
gotten when making the post-performance response- a phenomenon referred to as dura­
tioo neglect (Fredrickson and Kahneman 1993; Rozin et al. 2004; for further discussion, see 
Schuber! 2010). 

An early continuous self-report measure of emotion study is now described because it does 
provide valuable information on musical expressive playing. It is a pioneering study by Namba 
and co-wockers (Namba et al. 1991), in which keys on a computer keyboard representing vari­
ous emotions were pressed by the listening participant as the music was playing, and the location 
and identity of the key press in time provided information about the emotion expressed in the 
music. This study could be classified as rating musical expression continuously because Namba 
and colleagues collected continuous ratings of several interpretations of the Promenade from 
Mussorgsky's Pictures at an Exhibition. Different performances produced different emotional 
responses, suggesting that the physical performance parameters had been altered because the 
composition remained the same. In the study by Namba and Kuwano (1990). time-series plots 
of the adjective "votes" made by participants demonstrate how points ofhigh expression and the 
nature of the expression can be identified. Figure 13.1 shows two such time-series plots compar­
ing ratings of two performances of Promenade 1. A high point of "expression" (large number of 
votes in the time series) can be located in both performances in bars 11 and 12. However, foc the 
recording conducted by Ashkenazy, the largest proportion of responses suggest that the expres­
sion is described by the term "brilliant:' whereas for the performance conducted by Karajan the 
term "smooth" is used most frequently to describe the same passage. Hence. in addition to the 
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Figure 13.1. Continuous adjective rating of Promenade 1 in two performances of Pietures at an 

Exhibition by Mussorgsky. Reproduced trom Journal of the Acoustical Society of Japan, 11, Namba, 

S. and Kuwano, 5., Continuous multi-dimensional assessment of musical performance © 1990, The 

Authors, with permission. 
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other benefits of continuous ratings, the techniques developed by Namba and colleagues can be 
used to assess where a large amount of expressive activity takes place in a piece, even though it is 
based on selection of an emotion adjective. 

Of course, Namba's technique was not devised explicitly to measure self-reported musical 
expression. Studies that require the rating of "expressiveness" continuously while the music is 
playing are rare (e.g. PeddeU 2008). An example is reported in Chapter 16. Inspection of that 
time-series data presented interesting differences across recordings in expressiveness ratings 
at each point in time, but interpretation of such data needs to be done with caution (Schubert 
2001; Upham 2011). That is, musical expressiveness is a dynamic process, but parts ofthe pro­
cess (e.g. "serial correlation") can be hidden in the time series, meaning that statistically each 
response at a point in time in the piece is not necessarily independent of a response that was 
made earlier. Although time-se ries techniques are more involved than the analysis reported in 
Chapter 16 (see. for example. Schubert 2010), the results nevertheless indicated that "direct" 
musical expressiveness rating of performances revealed differences that would be hard to dis­
cern with single-sample retrospective ratings. Retrospective ratings must be influenced by 
some kind of averaging over time. selective recall, or duration neglect. Expressiveness is not. 
therefore, solely a post-listening effecL Judgements oflocations where musical expressiveness is 
higher or lower in one performance than in another can be ascertained by recording continuous 
expressiveness ratings. 

Some technical issues 
The technical details of self-report continuous response methods as applied to music are beyond 
the scope of this chapter. and are discussed elsewhere (Dean and Bailes 2010; Schubert 2010; 
Pearce 2011). These techniques can easily be applied to the rating of expressiveness. However, it is 
worth expanding here on a methodological problem that is peculiar to continuous response meas­
urement of expression. This is the matter of synchronizing two or more performances of the same 
piece or seetion of rnusic. As we have seen in the measures of physical properties, one of the most 
frequently researched aspects of music expression is fluctuation in timing. Performers use micro­
structural variations in tempo to produce expressive effects (Repp 1992; Palmer 1997; Gabrielsson 
2003; Widmer and Goebl 2004). As a result, different interpretations of the same piece will show 
net fluctuation in overall and small-scale durations. 

Comparison of two time-series plots of the same piece will therefere not align correctly when 
laid on top of each ether using the same time scale. This can lead to misleading results (the same 
time point in two different performances will correspond to different positions in the score). Two 
common ways of dealing with this problem are temporal registration with time scaling (dila­
tion or compression), and short-time signal-to-signal alignment (STSTSA) applying dynamic 
time warping algorithms as used to compare multiple physical-world sound files (e.g. Dixon and 
Widmer 2005; see previous section). 

Registration involves locating points in the music, usually with the aid of a music score, 
where the two performances might be expected to coincide, such as a seetion boundary, 
the start of a phrase, or at a marked change in tempo. McAdams and colleagues refer to this 
approach as "landmark-registration" (MeAdams et al. 2004) and is similar to anchoring, previ­
ously described. One of the performances can be treated as a reference (nominal performance), 
against which others are adjusted section by secHon (Le. landmark by landmark), compressing 
or dilating (stretching) their duration to match the duration of the reference section. A com­
mon landmark-registration approach is to map expressiveness ratings to the respective bar 
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(measure) in the music in which the rating occurs, as in the Namba example mentioned earHer 
(Figure 13.1). An even simpler and cruder form of this approach is to treat the entire perfor­
mance as a single unit, thus registering the start and end time points of each performance, and 
providing a proportional stretch or compression of all Dotes for each performance. The dilation 
or compression applied within segments is usually linear, which has the disadvantage of losing 
alignment in fine temporal differences (Vines et al. 2003). However, since the researcher can 
determine what instances of the performances should be aligned (such as the beginning of a 
phrase or the start of a new section), the landmark registration technique has a musicological 
validity associated with it. STSTSA is the other extreme of registration- where sound record­
ings are broken up into many small consecutive segments of several tens of milliseconds that are 
matched to each other using an algorithm, rather than manually registering landmarks, in order 
to compute the alignment path (Dixon et al. 2005; Macrae and Dixon 2010). Such techniques 
have been applied to identifying variations in different performances of contemporary dance 
(using video, in a manner analogous to audio only), involving time- and frequency-based tech­
niques (Ferguson et al. 2009; Stevens et al. 2009). 

Expression ratings provide an additional complication because they are likely to be reported 
immediately after the musically expressive event took place. This lag in response can be diag­
nosed by procedures such as cross-correlation (Nettheim 1999; Schubert 1999; Snyder and 
Krumhansl 2001; Toiviainen et al. 2010) to allow effects oflag in expressiveness response to be 
adjusted accordingly. Another approach is to perform STSTSA on the expressiveness ratings time 
series themselves, but here the problem is that the expressiveness rating is (falsely) assumed not 
to change significantly across performances, which, as we saw in the example ofNamba and col­
leagues (Figure 13.1), is not likely to happen at all points in time, and defeats the purpose of iden­
tifying important, distinct, and unique expressive events. 

Even though STSTSA algorithms da not require further high-level knowledge about the musi­
cal piece (form, structure, phrasing, and so on), and computational power is usually no langer a 
limiting factor, landmark-registration approaches are still more commonly used than STSTSA 
in self-reported expression research. However, the conceptually simpler and more pragmatic 
approach (at least from a musical perspective) oflandmark registration is likely to find a place in 
further research. 

Conclusions 
Researchers of music expressiveness are faced with a vast array of options for measuring and 
analyzing musical expression, from sound files to live performance, from ocular inspection of 
videos through to sophisticated motion-capture techniques, and self-report methods collected 
after a piece has been heard, or while it is unfolding. This chapter has outlined some of the tech­
niques and tools available. The literature demonstrates that audio analysis provides a vast range 
of options, from basic manual analysis using freely available software, through to highly sophis­
ticated, automated extraction of various psychoacoustic estimates of parameters such as tempo, 
pitch, and dynamics from audio. Motion capture is a relatively new technology that has supported 
a growing interest in looking at how the physical intra-player activity of the performer affects 
expressive communication and music perception via this non-auditory channel (for a discussion 
of between-player effects, see Chapter 15). Most motion capture systems require considerable 
post-processing prior to meaningful analysis. Self-reported ratings use the human participants' 
statistically processed responses to provide a simple way of identifying which performances of a 
piece and sections of music are more or less expressive. 
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OUf main aim in this chapter was to introduce the reader to developing and state-of-the-art 
tools for measuring musical expressivity. By applying Popper's worlds. we also aimed to draw to 
researchers' attention the critical philosophical impHcations of making measurements of expres­
siveness, specifically in making the distinetion between measuring World 1 (physical) aspects, 
such as motion and musical characteristics, and World 2 (experiential) aspects-the actual sen­
sation of expressiveness experienced by the perceiver. The key philosophieal point that unifies 
our review is that we understand each of these worlds through Popper's World 3-that of ideas, 
definitions, and, most importantly, measuring instrwnents of physical and psychometrie signals. 
In many ways we (and researchers in particular) are trapped in World 3, but our instruments in 
the future may hetp us to get doser to the physical and experiential worlds. Furthermore, we have 
limited our review to essentially western thinking about what expressiveness is, without consid­
eration of the way that other cultures and conventions may view expressiveness in music. 
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