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About this Chapter

This chapter gives an introduction to basic directions of current research in
expressive music performance. A special focus is given on the various meth-
ods to acquire performance data either during a performance (e.g. through
computer-monitored instruments) or from audio recordings. We then sur-
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196 Chapter 5. Sense in Expressive Music Performance

vey computational approaches to formalise and model the various aspects
in expressive music performance. Future challenges and open problems are
discussed briefly at the end of the chapter.

5.1 Introduction

Millions of people are regularly attending live music events or listening to
recordings of music performances. What drives them to do so is hard to pin
down with certainty, and the reasons for it might be manifold. But while
enjoying the music, they are all listening to (mostly) human-made music that
contains a specific human expression, whatever kind it might be – what they
hear makes intuitive sense to them. Without this expressivity the music would
not attract people; it is an integral part of the music.

Given the central importance of expressivity (not only in music, but in
all communication modes and interaction contexts), it is not surprising that
human expression and expressive behaviour have become a domain of intense
scientific study. In the domain of music, much research has focused on the
act of expressive music performance, as it is commonly and most typically found
in classical music: the deliberate shaping of the music by the performer, the
imposing of expressive qualities onto an otherwise “dead” musical score via
controlled variation of parameters such as intensity, tempo, timing, articula-
tion, etc. Early attempts at quantifying this phenomenon date back to the
beginning of the 20th century, and even earlier than that.

If we wish to precisely measure and analyse every detail of an expres-
sive music performance (onset timing, timbre and intensity, duration, etc.), we
end up with huge amounts of data that quickly become unmanageable. Since
the first large-scale, systematic investigations into expression in music perfor-
mance (usually of classical music) in the 1930s, this has always been a main
problem, which was controlled either by reducing the amount of music inves-
tigated to some seconds of music, or by limiting the number of performances
studied to one or two. Recent approaches try to overcome this problem by us-
ing modern computational methods in order to study, model, and understand
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musical performance in its full complexity.

In the past ten years, some very comprehensive overview papers have
been published on the various aspects of music performance research. The
probably most cited is Alf Gabrielsson’s chapter in Diana Deutsch’s book
“Psychology of Music” (Gabrielsson, 1999), in which he reviewed over 600 pa-
pers in this field published until approximately 1995. In a follow-up paper, he
added and discussed another 200 peer-reviewed contributions that appeared
until 2002 (Gabrielsson, 2003). A cognitive-psychological review has been
contributed by Palmer (1997) summarising empirical research that focuses on
cognitive aspects of music performance such as memory retrieval, anticipatory
planning, or motor control. The musicologist’s perspective is represented by
two major edited books devoted exclusively to music performance research
(Rink, 1995, 2002). Lately, more introductory chapters highlight the vari-
ous methodological issues of systematic musicological performance research
(Rink, 2003; Clarke, 2004; Cook, 2004; Windsor, 2004). Two recent contributions
surveyed the diversity of computational approaches to modelling expressive
music performance (De Poli, 2004; Widmer and Goebl, 2004). Parncutt and
McPherson (2002) attempted to bridge the gap between research on music
performance and music practice by bringing together two authors from each
of the two sides for each chapter of their book.

Considering this variety of overview papers, we aim in this chapter to
give a systematic overview on the more technological side of accessing, mea-
suring, analysing, studying, and modelling expressive music performances.
As a start, we survey the current literature of the past century on various
ways of obtaining expression-related data from music performances. Then,
we review current computational models of expressive music performance. In
a final section we briefly sketch possible future directions and open problems
that might be tackled by future research in this field.
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5.2 Data acquisition and preparation

This section is devoted to very practical issues of obtaining precise empirical
data on expressive performance. We can distinguish basically two different
strategies for obtaining information on music performance. The first is to mon-
itor performances during the production process with various measurement
devices (MIDI pianos, accelerometers, movement sensors, video systems, etc.).
Specific performance parameters can be accessed directly (hammer velocity of
each played tone, bow speed, fingering, etc.). The other way is to extract
all these relevant data from the recorded audio signal. This method has the
disadvantage that some information, easy to extract during performance, is
almost impossible to gain from the audio domain (consider, for instance, the
sustain pedal on the piano). The advantage, however, is that we now have
more than a century of recorded music at our disposal that could serve as a
valuable resource for various kinds of scientific investigation. In the following
sub-sections, we discuss the various approaches for monitoring and measur-
ing music performance, and survey the major empirical performance studies
that used them. As will be seen, by far the largest part of research has been
done on piano performances.

5.2.1 Using specially equipped instruments

Before computers and digital measurement devices were invented and readily
available for everyone, researchers employed a vast variety of mechanical and
electrical measurement apparati to capture all sorts of human or mechanical
movements during performance. We will review the most important of them,
in chronological order, from rather old to state-of-the-art.

Mechanical and electro-mechanical setups

Among the first to record the movement of piano keys were Binet and Courtier
(1895), who used a 6-mm caoutchouc rubber tube placed under the keys that
was connected to a cylindric graphical recorder that captured continuous air
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pressure resulting from striking different keys on the piano. They investigated
some basic pianistic tasks such as playing trills, connecting tones, or passing-
under of the thumb in scales with exemplary material. In the first of the two
contributions of this study, Ebhardt (1898) mounted metal springs on a bar
above the strings that closed an electrical shutter when the hammer was about
to touch the strings. The electric signal was recorded with a kymograph and
timed with a 100-Hz oscillator. He studied the timing precision of simple
finger tapping and playing scales. Further tasks with binary and ternary
metrum revealed some characteristic timing patterns (e.g. a lengthening of
the time interval before an accentuated onset). Onset and offset timing of
church hymn performances were investigated by Sears (1902). He equipped a
reed organ with mercury contacts that registered key depression of 10 selected
keys. This information was recorded on four tracks on the surface of a smoked
kymograph drum. He studied several temporal aspects of performances by
four organ players, such as duration of the excerpts, bars, and individual note
values, accent behavior, or note overlap (articulation).

A multitude of mechanical measurement devices were introduced by
Ortmann (1925, 1929) in studies on physiological determinants of piano play-
ing. To investigate the different behaviors of the key, he mounted a tuning
fork to the side of one piano key that wrote wave traces into smoked paper
which varied with the speed of the key. With this setup, he was one of the
first to study the response of the key in different pianistic playing techniques.
For assessing finger movements, Ortmann (1929, p. 230) used a custom-built
mechanical apparatus with non-flexible aluminum strips that, on one side,
were connected to either the finger (proximal phalanx) or the key surface and,
on the other side, wrote onto a revolving drum. With this apparatus, continu-
ous displacement of finger and key could be recorded and analysed. Another
mechanical system was the “Pantograph” (Ortmann, 1929, p. 164), a parallel-
ogram lever construction to record lateral arm movement. For other types of
movement, he used active optical systems. The motion of a tiny light bulb
attached to the wrist or the finger left a trace on a photo plate (the room was
kept in very subdued light) when the shutter of the photo camera remained
open for the entire duration of the movement.
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Similar active markers mounted on head, shoulder, elbow, and wrist
were used by Bernstein and Popova in their important study in 1930 (reported
by Kay et al., 2003) to study the complex interaction and coupling of the limbs
in piano playing. They used their “kymocyclographic camera” to record the
movements of the active markers. A rotating shutter allowed the light of the
markers to impinge on the constantly moving photographic film. With this
device they could record up to 600 instances of the movement per second.

Piano rolls as a data source

A special source of expression data are piano rolls for reproducing pianos
by different manufacturers (e.g. Welte-Mignon, Hupfeld, Aeolian Duo-Art,
Ampico). A number of renowned pianists made recordings on these devices
in the early part of the 20th century (Bowers, 1972; Hagmann, 1984). Such
pianos were the first means to record and store artistic music performances
before the gramophone was invented. Starting in the late 1920s, scientists took
advantage of this source of data and investigated various aspects of perfor-
mance. Heinlein (1929a,b, 1930) used Duo-Art rolls by the Aeolian company
to study pedal use of four pianists playing Schumann’s Träumerei. Rolls of
the same company were the basis of Vernon’s 1936 study. He investigated
vertical synchronisation of the tones in a chord (see Goebl, 2001). Hartmann
(1932) used Hupfeld “Animatic Rolls” and provided a very detailed study on
tone and bar durations as well as note onset asynchronies in two recordings
(by Josef Pembaur and Harold Bauer) of the first movement of Beethoven’s
”Moonlight Sonata” Op. 27 No. 2. Since the precise recording procedures used
by these companies are still unknown (they were deliberately held back for
commercial reasons), the authenticity of these rolls is sometimes questionable
(Hagmann, 1984; Gottschewski, 1996). For example, the Welte-Mignon sys-
tem was able to simultaneously control dynamics only for keyboard halves.
Hence, emphasising the melody note and playing the rest of the chord tones
more softly was only possible when the melody tone was played at a different
point in time than the others (Gottschewski, 1996, pp. 26–42). Although we
know today that pianists anticipate melody notes (Palmer, 1996b; Repp, 1996c;
Goebl, 2001), the Welte-Mignon rolls cannot be taken literally as a source for
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studying note asynchronies (as done by Vernon, 1936). The interpretation of
piano rolls must be done with care, keeping in mind the conditions of their
production. There are currently some private attempts to systematically scan
piano rolls and transform them into standard symbolic format (e.g. MIDI).
However, we are not aware of any scientific project concerned with this.

The Iowa piano camera

During the 1930s, Carl E. Seashore guided a research group that focused on
different aspects of music performance, namely the singing voice, violin play-
ing, and piano performance (Seashore, 1932, 1936b,a). They developed various
measurement setups for scientific investigation, among them the “Iowa Piano
Camera” (Henderson et al., 1936) that optically captured onset and offset times
and hammer velocity of each key and additionally the movement of the two
pedals. It was therefore a complete and rather precise device that was not
topped until the advent of modern computer-controlled pianos (such as the
Disklavier or the Bösendorfer SE, see Goebl and Bresin, 2003). Each hammer
is equipped with a shutter that controls light exposure of a moving film. The
hammer shutter interrupts the light exposure on the film twice: a first time
from 24 to 12 mm before the hammer touches the strings, and a second time at
hammer–string contact. The average hammer speed of the last 12 mm of the
hammer’s travel can be inferred from the distance on the film between these
two interrupts (today’s computer-controlled pianos take the average speed
of the final 5 mm). According to Skinner and Seashore (1936), the tempo-
ral resolution is around 10 ms. The hammer velocity is quantised into 17
dynamics categories (Henderson, 1936). With this system, the IOWA group
performed several studies with professional pianists. Henderson (1936) had
two professionals play the middle section of Chopin’s Nocturne Op. 15 No. 3.
In this very comprehensive study, they examined temporal behavior, phras-
ing, accentuation, pedalling, and chord asynchronies. Skinner and Seashore
(1936) analysed repeated performances of pieces by Beethoven and Chopin
and found high timing consistency among the pianists.
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Henry Shaffer’s photocell Bechstein

After the efforts of Seashore’s research group at Iowa, it took over 40 years
before a new group of researchers used modern technology to capture piano
performance. It was L. Henry Shaffer at Exeter who equipped each of the
88 keys of a Bechstein grand piano with pairs of photocells to capture the
essential expressive parameters of piano performance (Shaffer, 1980, 1981,
1984; Shaffer et al., 1985; Shaffer and Todd, 1987; Shaffer, 1992). The optical
registration of the action’s movements had the advantage of not affecting the
playability of the piano. The photocells were mounted in the piano action in
pairs, each capturing the moment of the hammer’s transit. One was placed
to register the instant of hammer-string contact, the other one the resting
position of the hammer. The position of the two pedals were monitored by
micro switches and stored as 12-bit words on the computer. Each such event
was assigned a time stamp rounded to the nearest microsecond. The sensor at
the strings yielded the note onset time, the one at the hammer’s resting position
(when the hammer returns) the note offset time. The time difference between
the two sensors was an inverse estimate of the force at which the key was
depressed. This technology is in principle identical to the computer-monitored
pianos that are commercially available now (e.g. the Yamaha Disklavier series
or the Bösendorfer SE).

Studies with synthesiser keyboards or digital pianos

Before computer-monitored acoustic pianos became widely available, simple
synthesiser keyboards or digital pianos were used to capture expressive data
from music performances. These devices provide timing and loudness data
for each performed event through the standardised digital communications
protocol MIDI (Musical Instrument Digital Interface) (Huber, 1999). However,
such keyboards do not provide a realistic performance setting for advanced
pianists, because the response of the keys is very different from an acoustic
piano and the synthesised sound (especially with extensive use of the right
pedal) does not satisfy the trained ears of highly skilled pianists.

Still, such electronic devices were used for various general expression
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studies (e.g. Palmer, 1989, 1992; Repp, 1994a,b, 1995c; Desain and Honing,
1994). Bruno Repp later repeated two of his studies that were first performed
with data from a digital piano (Repp, 1995c, concerned with legato articula-
tion; Repp, 1996b, concerned with the use of the right pedal) on a computer-
controlled grand piano (Repp, 1997c,b, respectively). Interestingly, the results
of both pairs of studies were similar to each other, even though the acous-
tic properties of the digital piano were considerably different from the grand
piano.

The Yamaha Disklavier system

Present performance studies dealing with piano performances generally make
use of commercially available computer-controlled acoustic pianos. Apart
from systems that can be built into a piano (e.g. Autoklav, Pianocorder, see
Coenen and Schäfer, 1992), the most common is the Disklavier system by
Yamaha. The first computer-controlled grand pianos were available from
1989 onwards. The Mark IV series that is currently available includes also a
computer with screen and several high-level functions such as an automatic
accompaniment system. From 1998, Yamaha introduced their high-end PRO
series of Disklaviers that involves an extended MIDI format to store more
than 7-bit velocity information (values from 0 to 127) and information on key
release.

There were few attempts to assess the Disklavier’s accuracy in recording
and reproducing performances. Coenen and Schäfer (1992) compared various
reproducing systems (among them a Disklavier DG2RE and a SE225) with
respect to their usability for reproducing compositions for mechanical instru-
ments. More systematic tests on recording and reproduction accuracy were
performed by Goebl and Bresin (2001, 2003) using accelerometer registration
to inspect key and hammer movements during recording and reproduction.

Yamaha delivers both upright and grand piano versions of its Disklavier
system. The upright model was used for several performance studies (Palmer
and van de Sande, 1993; Palmer and Holleran, 1994; Repp, 1995a,b, 1996c,a,d,
1997d,a). The Yamaha Disklavier grand piano was even more widely used.
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Moore (1992) combined data from a Disklavier grand piano with electromyo-
graphic recordings of the muscular activity of four performers playing trills.
Behne and Wetekam (1994) recorded student performances of the theme from
Mozart’s K.331 sonata on a Disklavier grand piano and studied systematic
timing variations of the Siciliano rhythm. As mentioned above, Repp repeated
his work on legato and pedalling on a Disklavier grand piano (Repp, 1997c,b).
Juslin and Madison (1999) used a Disklavier grand piano to record and play
back different (manipulated) performances of two melodies to assess listeners’
ability to recognise simple emotional categories. Bresin and Battel (2000) anal-
ysed multiple performances recorded on a Disklavier grand piano of Mozart’s
K.545 sonata in terms of articulation strategies. Clarke and Windsor (2000)
used recordings made on a Disklavier grand piano for perceptual evaluation
of real and artificially created performances. A short piece by Beethoven was
recorded on a Disklavier grand piano played by one (Windsor et al., 2001)
and by 16 professional pianists (Timmers et al., 2002; Timmers, 2002) in dif-
ferent tempi. Timing characteristics of different types of grace notes were
investigated. Riley-Butler (2002) used a Disklavier grand piano in educational
settings. She presented students with piano roll representations of their per-
formances and observed considerable increase of learning efficiency with this
method.

Bösendorfer’s SE system

The SE (“Stahnke Electronics”) System dates back to the early 1980s when
the engineer Wayne Stahnke developed a reproducing system in cooperation
with the MIT Artificial Intelligence Laboratory. It was built into a Bösendorfer
Imperial grand piano (Roads, 1986; Moog and Rhea, 1990). A first prototype
was ready in 1985; the system was officially sold by Kimball (at that time
owner of Bösendorfer) starting from summer 1986. This system was very
expensive and only few academic institutions could afford it. Until the end of
its production, only about three dozen of these systems have been built and
sold. In principle, the SE works like the Disklavier system (optical sensors
register hammershank speed and key release, and linear motors reproduce
final hammer velocity). However, its recording and reproducing capabilities
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are superior even compared with other much younger systems (Goebl and
Bresin, 2003). Despite its rare occurrence in academic institutions, it was used
for performance research in some cases.

Palmer and Brown (1991) performed basic tests on the relationship be-
tween hammer velocity and peak amplitude of the resulting sound. Repp
(1993) tried to estimate peak sound level of piano tones from the two low-
est partials as measured in the spectrogram and compared a digital piano, a
Disklavier MX100A upright piano, with the Bösendorfer SE. Studies in music
performance were performed at Ohio State University (Palmer and van de
Sande, 1995; Palmer, 1996b,a), at the Musikhochschule Karlsruhe (e.g. Maz-
zola and Beran, 1998; Mazzola, 2002, p. 833), and on the grand piano located at
the Bösendorfer company in Vienna (Goebl, 2001; Widmer, 2001, 2002b, 2003;
Goebl and Bresin, 2003; Widmer, 2005).

Very recently (2006), the Bösendorfer company in Vienna has finished
development of a new computer-controlled reproducing piano called “CEUS”
that includes, among other features, sensors that register the continuous mo-
tion of each key. These data might be extremely valuable for studies regarding
pianists’ touch and tone control.

5.2.2 Measuring audio by hand

An alternative to measuring music expression during performance through
sensors placed in or around the performer or the instrument is to analyse
the recorded sound of music performances. This has the essential advan-
tage that any type of recording may serve as a basis for investigation, e.g.
commercially available CDs, historic recordings, or recordings from ethnomu-
sicological research. One could just simply go into a record store and buy all
the performances by the great pianists of the past century.1

However, extracting precise performance information from audio is dif-
ficult and sometimes impossible. The straight-forward method is to inspect

1In analysing recordings the researcher has to be aware that almost all records are glued
together from several takes so the analysed performance might never have taken place in this
particular rendition (see also Clarke, 2004, p. 88).
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the waveform of the audio signal with computer software and mark manu-
ally with a cursor the onset times of selected musical events. Though this
method is time-consuming, it delivers timing information with a reasonable
precision. Dynamics is a more difficult issue. Overall dynamics (loudness) can
be measured (e.g. by reading peak energy values from the root-mean-square
of the signal averaged over a certain time window), but we are not aware of
a successful procedure to extract individual dynamics of simultaneous tones
(for an attempt, see Repp, 1993). Many other signal processing problems have
not been solved either (e.g. extracting pedal information, tone length and
articulation, etc., see also McAdams et al., 2004).

First studies that extracted timing information directly from sound used
oscillogram filming (e.g. Bengtsson and Gabrielsson, 1977; for more references
see Gabrielsson, 1999, p. 533). Povel (1977) analysed gramophone records
of three performances of Johann Sebastian Bach’s first prelude of The Well-
Tempered Clavier, Vol. I. He determined the note onsets “by eye” from two
differently obtained oscillograms of the recordings (which were transferred
onto analog tape). He reported a temporal precision of 1–2 ms (!). Recordings
of the same piece were investigated by Cook (1987), who obtained timing (and
intensity) data with a computational method. Onset detection was automated
by a threshold procedure applied to the digitised sound signal (8 bit, 4 kHz)
and post-corrected by hand. He reported a timing resolution of 10 ms. He also
stored intensity values, but did not specify in more detail what exactly was
measured there.

Gabrielsson et al. (1983) analysed timing patterns of performances from
28 different monophonic melodies played by 5 performers. The timing data
were measured from the audio recordings with a precision of±5 ms (p. 196). In
a later study, Gabrielsson (1987) extracted both timing and (overall) intensity
data from the theme of Mozart’s sonata K.331. In this study, a digital sampling
system was used that allowed a temporal precision of 1–10 ms. The dynamics
was estimated by reading peak amplitudes of each score event (in voltages).
Nakamura (1987) used a Brüel & Kjær level recorder to register dynamics of
solo performances played on a violin, oboe, and recorder. He analysed the
produced dynamics in relation to the perceived intensity of the music.
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The first larger corpus of recordings was measured by Repp (1990) who
fed 19 recordings of the third movement of Beethoven’s piano sonata Op. 31
No. 3 into a VAX 11/780 computer and read off the note onsets from waveform
displays. In cases of doubt, he played the sound up to the onset and moved the
cursor stepwise back in time, until the following note was no longer audible
(Repp, 1990, p. 625). He measured the performances at the quarter-note level2

and reported an absolute mean error of 6.5 ms for repeated measurements
(equivalent to 1% of the inter-onset intervals, p. 626). In a further study, Repp
(1992) collected 28 recordings of Schumann’s “Träumerei” by 24 renowned
pianists. He used a standard waveform editing program to hand-measure the
10-kHz sampled audio files. The rest of the procedure was identical (aural
control of ambiguous onsets). He reported an average absolute measurement
error of 4.3 ms (or less than 1%). In his later troika on the “microcosm of
musical expression” (Repp, 1998, 1999a,b), he applied the same measurement
procedure on 115 performances of the first five bars of Chopin’s Etude Op. 10
No. 3 collected from libraries and record stores. He also extracted overall
intensity information (Repp, 1999a) by taking the peak sound levels (pSPL in
dB) extracted from the root-mean-square (RMS) integrated sound signal (over
a rectangular window of 30 ms).

Nettheim (2001) measured parts of recordings of four historical perfor-
mances of Chopin’s e-minor Nocturne Op. 72 No. 1 (Pachmann, Godowsky,
Rubinstein, Horowitz). He used a time-stretching software to reduce the play-
back speed by a factor of 7 (without changing the pitch of the music). He
then simply took the onset times from a time display during playback. Tone
onsets of all individual tones were measured with this method.3 In repeated
measurements, he reported an accuracy of around 14 ms. In addition to note
onset timing, he assigned arbitrary intensity values to each tone ranging from
1 to 100 by ear.

In recent contributions on timing and synchronisation in jazz perfor-
mances, the timing of the various instruments of jazz ensembles was inves-

2In the second part of this paper, he measured and analysed eight-note and sixteenth-note
values as well.

3Obviously, the chosen excerpts were slow pieces with a comparatively low note density.
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tigated. Friberg and Sundström (2002) measured cymbal onsets from spec-
trogram displays with a reported precision of ±3 ms. Ashley (2002) studied
the synchronisation of the melody instruments with the double bass line. He
repeatedly measured onsets of both lines from waveform plots of the digitised
signal with usual differences between the measurements of 3–5 ms. About
the same level of consistency (typically 2 ms) was achieved by Collier and
Collier (2002) through a similar measurement procedure (manual annotation
of physical onsets in trumpet solos). Lisboa et al. (2005) used a wave editor to
extract onset timing in solo cello performances; Moelants (2004) made use of a
speech transcription software (“Praat”) to assess trill and ornament timing in
solo string performances.

In a recent commercial enterprise, John Q. Walker and colleagues have
been trying to extract the complete performance information out of histori-
cal (audio) recordings in order to play them back on a modern Disklavier.4

Their commercial aim is to re-sell old recordings with modern sound quality
or live performance feel. They computationally extract as much performance
information as possible and add the missing information (e.g. tone length,
pedalling) to an artificially-created MIDI file. They use it to control a modern
Disklavier grand piano and compare this performance to the original record-
ing. Then they modify the added information in the MIDI files and play it
back again and repeat this process iteratively until the Disklavier’s reproduc-
tion sounds “identical” to the original recording (see also Midgette, 2005).

Another way of assessing temporal content of recordings is by tapping
along with the music recording e.g. on a MIDI drum pad or a keyboard, and
recording this information (Cook, 1995; Bowen, 1996; Bachmann, 1999). This
is a comparably fast method to gain rough timing data at a tappable beat level.
However, perceptual studies on tapping along with expressive music showed
that tappers – even after repeatedly tapping along with the same short piece
of music – still underestimate abrupt tempo changes or systematic variations
(Dixon et al., 2005).

4http://www.zenph.com
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5.2.3 Computational extraction of expression from audio

The most general approach to extracting performance-related data directly
from audio recordings would be fully automatic transcription, but such sys-
tems are currently not robust enough to provide the level of precision required
for analysis of expression (Klapuri, 2004). However, more specialised systems
were developed with the specific goal of expression extraction, in an attempt to
support the painstaking effort of manual annotation (e.g. Dixon, 2000). Since
the score is often available for the performances being analysed, Scheirer (1997)
recognised that much better performance could be obtained by incorporating
score information into the audio analysis algorithms, but his system was never
developed to be sufficiently general or robust to be used in practice. One thing
that was lacking from music analysis software was an interface for interactive
editing of partially correct automatic annotations, without which the use of
the software was not significantly more efficient than manual annotation.

The first system with such an interface was BeatRoot (Dixon, 2001a,b), an
automatic beat tracking system with a graphical user interface which visualised
(and auralised) the audio and derived beat times, allowing the user to edit the
output and retrack the audio data based on the corrections. BeatRoot produces
a list of beat times, from which tempo curves and other representations can
be computed. Although it has its drawbacks, this system has been used
extensively in studies of musical expression (Goebl and Dixon, 2001; Dixon
et al., 2002; Widmer, 2002a; Widmer et al., 2003; Goebl et al., 2004). Recently,
Gouyon et al. (2004) implemented a subset of BeatRoot as a plug-in for the
audio editor WaveSurfer (Sjölander and Beskow, 2000).

A similar methodology was applied in the development of JTranscriber
(Dixon, 2004), which was written as a front end for an existing transcription
system (Dixon, 2000). The graphical interface shows a spectrogram scaled to
a semitone frequency scale, with the transcribed notes superimposed over the
spectrogram in piano roll notation. The automatically generated output can
be edited with simple mouse-based operations, with audio playback of the
original and the transcription, together or separately.

These tools provide a better approach than manual annotation, but
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since they have no access to score information, they still require a significant
amount of interactive correction, so that they are not suitable for very large
scale studies. An alternative approach is to use existing knowledge, such as
from previous annotations of other performances of the same piece of music,
and to transfer the metadata after aligning the audio files. The audio alignment
system MATCH (Dixon and Widmer, 2005) finds optimal alignments between
pairs of recordings, and is then able to transfer annotations from one recording
to the corresponding time points in the second. This proves to be a much
more efficient method of annotating multiple performances of the same piece,
since manual annotation needs to be performed only once. Further, audio
alignment algorithms are generally much more accurate than techniques for
direct extraction of expressive information from audio data, so the amount of
subsequent correction for each matched file is much less.

Taking this idea one step further, the initial annotation phase can be
avoided entirely if the musical score is available in a symbolic format, by syn-
thesising a mechanical performance from the score and matching the audio
recordings to the synthetic performance. For analysis of expression in au-
dio, e.g. tempo measurements, the performance data must be matched to the
score, so that the relationship between actual and nominal durations can be
computed. Several score-performance alignment systems have been devel-
oped for various types of music (Cano et al., 1999; Soulez et al., 2003; Turetsky
and Ellis, 2003; Shalev-Shwartz et al., 2004).

Other relevant work is the on-line version of the MATCH algorithm,
which can be used for tracking live performances with high accuracy (Dixon,
2005a,b). This system is being developed for real time visualisation of per-
formance expression. The technical issues are similar to those faced by score-
following systems, such as those used for automatic accompaniment (Dan-
nenberg, 1984; Orio and Déchelle, 2001; Raphael, 2004), although the goals
are somewhat different. Matching involving purely symbolic data has also
been explored. Cambouropoulos developed a system for extracting score files
from expressive performances in MIDI format (Cambouropoulos, 2000). After
manual correction, the matched MIDI and score files were used in detailed
studies of musical expression. Various other approaches to symbolic score-
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performance matching are reviewed by Heijink et al. (2000b,a).

5.2.4 Extracting expression from performers’ movements

While the previous sections dealt with the extraction of expression contained
in music performances, this section is devoted to expression as represented
in all kinds of movements that occur when performers interact with their
instruments during performance (for an overview, see Davidson and Correia,
2002; Clarke, 2004). Performers’ movements are a powerful communication
channel of expression to the audience, sometimes even overriding the acoustic
information (Behne, 1990; Davidson, 1994).

There are several ways to monitor performers’ movements. One pos-
sibility is to connect mechanical devices to the playing apparatus of the per-
former (Ortmann, 1929), but that has the disadvantage of inhibiting the free
execution of the movements. More common are optical tracking systems that
either simply video-tape a performer’s movements or record special passive or
active markers placed on particular joints of the performer’s body. We already
mentioned an early study by Berstein and Poppova (1930), who introduced
an active photographical tracking system (Kay et al., 2003). Such systems
use light-emitting markers placed on the various limbs and body parts of the
performer. They are recorded by video cameras and tracked by software that
extracts the position of the markers (e.g. the Selspot System, as used by Dahl,
2004, 2005). The disadvantage of these systems is that the participants need to
be cabled, which is a time-consuming process. Also, the cables might inhibit
the participants to move as they would normally move. Passive systems use
reflective markers that are illuminated by external lamps. In order to create
a three-dimensional picture of movement, the data from several cameras are
coupled by software (Palmer and Dalla Bella, 2004).

Even less intrusive are video systems that simply record performance
movements without any particular marking of the performer’s limbs. Elabo-
rated software systems (e.g. EyesWeb5, see Camurri et al., 2004, 2005) are able
to track defined body joints directly from the plain video signal (see Camurri

5http://www.megaproject.org
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and Volpe, 2004, for an overview on gesture-related research). Perception stud-
ies on communication of expression through performers’ gestures use simpler
point-light video recordings (reflective markers on body joints recorded in a
darkened room) to present them to participants for ratings (Davidson, 1993).

5.2.5 Extraction of emotional content from MIDI and audio

For listeners and musicians, an important aspect of music is its ability to ex-
press emotions (Juslin and Laukka, 2004). An important research question has
been to investigate the coupling between emotional expression and the under-
lying musical parameters. Two important distinctions have to be made. The
first distinction is between perceived emotional expression (“what is commu-
nicated”) and induced emotion (“what you feel”). Here, we will concentrate
on the perceived emotion which has been the focus of most of the research in
the past. The second distinction is between compositional parameters (pitch,
melody, harmony, rhythm) and performance parameters (tempo, phrasing,
articulation, accents). The influence of compositional parameters has been in-
vestigated for a long time starting with the important work of Hevner (1937).
A comprehensive summary is given in Gabrielsson and Lindström (2001). The
influence of performance parameters has recently been investigated in a num-
ber of studies (for overviews see Juslin and Sloboda, 2001; Juslin, 2003). These
studies indicate that for basic emotions such as happy, sad or angry, there is a
simple and consistent relationship between the emotional description and the
parameter values. For example, a sad expression is generally characterised by
slow tempo, low sound level, legato articulation, and a happy expression is
often characterised by fast tempo, moderate sound level and staccato articula-
tion.

Predicting the emotional expression is usually done in a two-step pro-
cess (Lindström et al., 2005). The first step extracts the basic parameters from
the incoming signal. The selection of parameters is a trade-off between what
is needed in terms of emotion-mapping and what is possible. MIDI perfor-
mances are the simplest case in which the basic information in terms of notes,
dynamics and articulation is already available. From this data it is possible
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to deduce for example the tempo using beat-tracking methods as described
above. Audio from monophonic music performances can also be analyzed at
the note level, which gives similar parameters as in the MIDI case (with some
errors). In addition, using audio, a few extra parameters are available such as
the spectral content and the attack velocity. The CUEX algorithm by Friberg
et al. (2005) was specifically designed for prediction of emotional expression;
it determines eight different parameters for each recognised note. Polyphonic
audio is the most difficult case which has only recently been considered. One
possibility is to first perform note extraction using polyphonic transcription
(e.g. Klapuri, 2004) and then extract the parameters. Due to the lack of pre-
cision of polyphonic transcription there will be many errors. However, this
may not be too problematic for the prediction of the emotion if the mapping is
redundant and insensitive to small errors in the parameters. A more straight-
forward approach is to extract overall parameters directly from audio, such
as using auditory-based measures for pitch, rhythm and timbre (Leman et al.,
2004; Liu et al., 2003).

The second step is the mapping from the extracted parameters to the
emotion character. A typical data-driven method is to use listener ratings
(the “right” answer) for a set of performances to train a model. Common
statistical/mathematical models are used such as regression (Leman et al., 2004;
Juslin, 2000), Bayesian networks (Canazza et al., 2003), or Hidden Markov
Models (Dillon, 2003).

5.3 Computational models of music performance

As the preceding sections have demonstrated, a large amount of empirical
data about expressive performance has been gathered and analysed (mostly
using statistical methods). The ultimate goal of this research is to arrive at
an understanding of the relationships between the various factors involved in
performance that can be formulated in a general model. Models describe rela-
tions among different kinds of observable (and often measurable) information
about a phenomenon, discarding details that are felt to be irrelevant. They
serve to generalise empirical findings and have both a descriptive and predic-
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tive value. Often the information is quantitative and we can distinguish input
data, supposedly known, and output data, which are inferred by the model.
In this case, inputs can be considered as the causes, and outputs the effects
of the phenomenon. Computational models – models that are implemented
on a computer – can compute the values of output data corresponding to the
provided values of inputs. This process is called simulation and is widely used
to predict the behaviour of the phenomenon in different circumstances. This
can be used to validate the model, by comparing the predicted results with
actual observations.

5.3.1 Modelling strategies

We can distinguish several strategies for developing the structure of the model
and finding its parameters. The most prevalent ones are analysis-by-measurement
and analysis-by-synthesis. Recently also methods from artificial intelligence
have been employed: machine learning and case based reasoning. One can
distinguish local models, which operate at the note level and try to explain the
observed facts in a local context, and global models that take into account the
higher level of the musical structure or more abstract expression patterns. The
two approaches often require different modelling strategies and structures. In
certain cases, it is possible to devise a combination of both approaches. The
composed models are built by several components, each one aiming to explain
different sources of expression. However, a good combination of the different
parts is still quite a challenging research problem.

Analysis by measurement

The first strategy, analysis-by-measurement, is based on the analysis of devi-
ations from the musical notation measured in recorded human performances.
The goal is to recognise regularities in the deviation patterns and to describe
them by means of a mathematical model, relating score to expressive values
(see Gabrielsson 1999 and Gabrielsson 2003, for an overview of the main re-
sults). The method starts by selecting the performances to be analyzed. Often
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rather small sets of carefully selected performances are used. The physical
properties of every note are measured using the methods seen in section 5.2
and the data so obtained are checked for reliability and consistency. The
most relevant variables are selected and analysed. The analysis assumes an
interpretation model that can be confirmed or modified by the results of the
measurements. Often the assumption is made that patterns deriving from
different sources or hierarchical levels can be separated and then added. This
assumption helps the modelling phase, but may be overly simplistic. The
whole repertoire of statistical data analysis techniques is then available to fit
descriptive or predictive models onto the empirical data – from regression
analysis to linear vector space theory to neural networks or fuzzy logic.

Many models address very specific aspects of expressive performance,
for example, the final ritard and its relation to human motion (Kronman and
Sundberg, 1987; Todd, 1995; Friberg and Sundberg, 1999; Sundberg, 2000;
Friberg et al., 2000b); the timing of grace notes (Timmers et al., 2002); vi-
brato (Desain and Honing, 1996; Schoonderwaldt and Friberg, 2001); melody
lead (Goebl, 2001, 2003); legato (Bresin and Battel, 2000); or staccato and its
relation to local musical context (Bresin and Widmer, 2000; Bresin, 2001).

A global approach was pursued by Todd in his phrasing model (Todd,
1992, 1995). This model assumes that the structure of a musical piece can be
decomposed into a hierarchy of meaningful segments (phrases), where each
phase is in turn composed of a sequence of sub-phrases. The fundamental as-
sumption of the model is that performers emphasise the hierarchical structure
by an accelerando-ritardando pattern and a crescendo-decrescendo pattern for
each phrase, and that these patterns are superimposed (summed) onto each
other to give the actually observed complex performance. It has recently been
shown empirically on a substantial corpus of Mozart performances (Tobudic
and Widmer, 2006) that this model may be appropriate to explain (in part,
at least) the shaping of dynamics by a performer, but less so as a model of
expressive timing and tempo.
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Analysis by synthesis

While analysis by measurement develops models that best fit quantitative
data, the analysis-by-synthesis paradigm takes into account the human per-
ception and subjective factors. First, the analysis of real performances and the
intuition of expert musicians suggest hypotheses that are formalised as rules.
The rules are tested by producing synthetic performances of many pieces and
then evaluated by listeners. As a result the hypotheses are refined, accepted
or rejected. This method avoids the difficult problem of objective comparison
of performances, including subjective and perceptual elements in the devel-
opment loop. On the other hand, it depends very much on the personal
competence and taste of a few experts.

The most important model developed in this way is the KTH rule system
(Friberg, 1991, 1995; Friberg et al., 1998, 2000a; Sundberg et al., 1983, 1989,
1991). In the KTH system, a set of rules describe quantitatively the deviations
to be applied to a musical score, in order to produce a more attractive and
human-like performance than the mechanical one that results from a literal
playing of the score. Every rule tries to predict (and to explain with musical or
psychoacoustic principles) some deviations that a human performer is likely to
apply. Many rules are based on a low-level structural analysis of the musical
score. The KTH rules can be grouped according to the purposes that they
apparently have in music communication. For instance, differentiation rules
appear to facilitate categorisation of pitch and duration, whereas grouping
rules appear to facilitate grouping of notes, both at micro and macro levels.

Machine learning

In the “traditional” way of developing models, the researcher normally makes
some hypothesis on the performance aspects s/he wishes to model and then
tries to establish the empirical validity of the model by testing it on real data or
on synthetic performances. An alternative approach, pursued by Widmer and
coworkers (Widmer, 1995a,b, 1996, 2000, 2002b; Widmer and Tobudic, 2003;
Widmer, 2003; Widmer et al., 2003; Widmer, 2005; Tobudic and Widmer, 2006),
tries to extract new and potentially interesting regularities and performance
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principles from many performance examples, by using machine learning and
data mining algorithms (see also Chapter 4 in this book). The aim of these
methods is to search for and discover complex dependencies on very large
data sets, without a specific preliminary hypothesis. A possible advantage is
that machine learning algorithms may discover new (and possibly interesting)
knowledge, avoiding any musical expectation or assumption. Moreover, some
algorithms induce models in the form of rules that are directly intelligible and
can be analysed and discussed with musicologists. This was demonstrated in
a large-scale experiment (Widmer, 2002b), where a machine learning system
analysed a large corpus of performance data (recordings of 13 complete Mozart
piano sonatas by a concert pianist), and autonomously discovered a concise
set of predictive rules for note-level timing, dynamics, and articulation. Some
of these rules turned out to describe regularities similar to those incorporated
in the KTH performance rule set (see above), but a few discovered rules ac-
tually contradicted some common hypotheses and thus pointed to potential
shortcomings of existing theories.

The note-level model represented by these learned rules was later com-
bined with a machine learning system that learned to expressively shape timing
and dynamics at various higher levels of the phrase hierarchy (in a similar way
as described in Todd’s 1989; 1992 structure-level models), to yield a multi-level
model of expressive phrasing and articulation (Widmer and Tobudic, 2003).
A computer performance of a (part of a) Mozart piano sonata generated by
this model was submitted to the International Performance Rendering Contest
(RENCON) in Tokyo, 2002, where it won the Second Prize behind a rule-based
rendering system that had been carefully tuned by hand. The rating was
done by a jury of human listeners. This can be taken as a piece of evidence
of the musical adequacy of the model. However, as an explanatory model,
this system has a serious shortcoming: in contrast to the note-level rules, the
phrase-level performance model is not interpretable, as it is based on a kind of
case-based learning (see also below). More research into learning structured,
interpretable models from empirical data will be required.
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Case-based reasoning

An alternative approach, closer to the observation-imitation-experimentation
process observed in humans, is that of directly using the knowledge implicit in
human performances. Case-based reasoning (CBR) is based on the idea of solv-
ing new problems by using (often with some kind of adaptation) similar pre-
viously solved problems. An example in this direction is the SaxEx system for
expressive performance of jazz ballads (Arcos et al., 1998; López de Mántaras
and Arcos, 2002),which predicts expressive transformations to recordings of
saxophone phrases by looking at how other, similar phrases were played by
a human musician. The success of this approach greatly depends on the
availability of a large amount of well-distributed previously solved problems,
which are not easy to collect.

Mathematical theory approach

A rather different model, based mainly on mathematical considerations, is the
Mazzola model (Mazzola, 1990; Mazzola and Zahorka, 1994; Mazzola et al.,
1995; Mazzola, 2002; Mazzola and Göller, 2002). This model basically consists
of a musical structure analysis part and a performance part. The analysis
part involves computer-aided analysis tools, for various aspects of the music
structure, that assign particular weights to each note in a symbolic score. The
performance part, that transforms structural features into an artificial perfor-
mance, is theoretically anchored in the so-called Stemma Theory and Operator
Theory (a sort of additive rule-based structure-to-performance mapping). It
iteratively modifies the performance vector fields, each of which controls a
single expressive parameter of a synthesised performance.

The Mazzola model has found a number of followers who studied and
used the model to generate artificial performances of various pieces. Un-
fortunately, there has been little interaction or critical exchange between this
“school” and other parts of the performance research community, so that the
relation between this model and other performance theories, and also the
empirical validity of the model, are still rather unclear.
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5.3.2 Perspectives

Computer-based modelling of expressive performance has shown its promise
over the past years and has established itself as an accepted methodology.
However, there are still numerous open questions related both to the technol-
ogy, and to the questions that could be studied with it. Two prototypical ones
are briefly discussed here.

Comparing performances and models

A problem that naturally arises in quantitative performance research is how
performances can be compared. In subjective comparison often a supposed
“ideal” performance is used as a reference by the evaluator. In other cases, an
actual reference performance can be assumed. Of course subjects with different
background may have dissimilar preferences that are not easily made explicit.

When we consider computational models, objective numerical compar-
isons would be desirable. In this case, performances are represented by sets of
values. Various similarity or distance measures (e.g. absolute difference, Eu-
clidean distance, etc.) can be defined over these, and it is not at all clear which
of these is most appropriate musically. Likewise, it is not clear how to weight
individual components or aspects (e.g. timing vs. dynamics), or how these
“objective” differences relate to subjectively perceived differences. Agreed-
upon methods for performance comparison would be highly important for
further fruitful research in this field.

Common principles vs. differences

The models discussed in the previous sections aim at explaining and sim-
ulating general principles that seem to govern expressive performance, that
is, those aspects of the relation between score and performance that seem
predictable and more or less common to different performances and artists.
Recently research has also started to pay attention to aspects that differentiate
performances and performers’ styles (Repp, 1992; Widmer, 2003). The same
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piece of music can be performed trying to convey different expressive inten-
tions (Gabrielsson and Lindström, 2001), sometimes changing the character
of the performance drastically. The CARO model (Canazza et al., 2004) is
able to modify a neutral performance (i.e. played without any specific expres-
sive intention) in order to convey different expressive intentions. Bresin and
Friberg (2000) developed some macro rules for selecting appropriate values
for the parameters of the KTH rule system in order to convey different emo-
tions. The question of the boundary between predictability and individuality
in performance remains a challenging one.

5.4 Conclusions

Quantitative research on expressive human performance has been developing
quickly during the past decade, and our knowledge of this complex phe-
nomenon has improved considerably. There is ample room for further inves-
tigations, and the field of computational performance research continues to
be active. As the present survey shows, the computer has become a central
player in this kind of research, both in the context of measuring and extract-
ing expression-related information from performances, and in analysing and
modelling the empirical data so obtained. Intelligent computational meth-
ods are thus helping us advance our understanding of a complex and deeply
human ability and phenomenon. In addition, operational computer models
of music performance will also find many applications in music education
and entertainment – think, for instance, of expressive music generation or
interactive expressive music control in multimedia applications or games, of
quasi-autonomous systems for interactive music performance, of new types of
musical instruments or interfaces that provide novel means of conveying ex-
pressive intentions or emotions, or of intelligent tutoring or teaching support
systems in music education.

Still, there are fundamental limits that will probably be very hard to
overcome for music performance research, whether computer-based or not.
The very idea of a creative activity being predictable and, more specifically,
the notion of a direct quasi-causal relation between the content of the music
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and the performance has obvious limitations. The person and personality of
the artist as a mediator between music and listener is totally neglected in ba-
sically all models discussed above. There are some severe general limits to
what any predictive model can describe. For instance, very often performers
intentionally play the repetition of the same phrase or section totally differently
the second time around. Being able to model and predict this would presup-
pose models of aspects that are outside the music itself, such as performance
context, artistic intentions, personal experiences, listeners’ expectations, etc.

Although it may sound quaint, there are concrete attempts at elaborat-
ing computational models of expressive performance to a level of complexity
where they are able to compete with human performers. Since 2002, a scientific
initiative brings together scientists from all over the world for a competition of
artificially created performances (RENCON, contest for performance render-
ing systems6). Their aim is to construct computational systems that are able
to pass a kind of expressive performance Turing Test (that is, an artificial per-
formance sounds indistinguishable from a human performance, Hiraga et al.,
2004). The very ambitious goal proclaimed by the RENCON initiative is for
a computer to win the Chopin competition by 2050 (Hiraga et al., 2004). It is
hard to imagine that this will ever be possible, not only because the organis-
ers of such a competition will probably not permit a computer to participate,
but also because a computational model would have to take into account the
complex social and cognitive contexts in which, like any human intellectual
and artistic activity, a music performance is situated. But even if complete
predictive models of such phenomena are strictly impossible, they advance
our understanding and appreciation of the complexity of artistic behaviour,
and it remains an intellectual and scientific challenge to probe the limits of
formal modelling and rational characterisation.

6http://shouchan.ei.tuat.ac.jp/∼rencon/

In P. Polotti & D. Rocchesso (Eds.), Sound to Sense – Sense to Sound: A State of the Art in Sound and Music Computing (pp. 195–242). Berlin: Logos.

http://shouchan.ei.tuat.ac.jp/~rencon/


222 Chapter 5. Sense in Expressive Music Performance

Acknowledgments

This research was supported by the European Union (project FP6 IST-2004-
03773 S2S2 “Sound to Sense, Sense to Sound”); the Austrian Fonds zur Förderung
der Wissenschaftlichen Forschung (FWF; START project Y99-INF “Computer-
Based Music Research: Artificial Intelligence Models of Musical Expression”);
and the Viennese Science and Technology Fund (WWTF; project CI010 “In-
terfaces to Music”). The Austrian Research Institute for Artificial Intelligence
(OFAI) acknowledges basic financial support by the Austrian Federal Min-
istries for Education, Science, and Culture, and for Transport, Innovation and
Technology.

In P. Polotti & D. Rocchesso (Eds.), Sound to Sense – Sense to Sound: A State of the Art in Sound and Music Computing (pp. 195–242). Berlin: Logos.



Bibliography
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S. Canazza, G. De Poli, G. Mion, A. Rodà, A. Vidolin, and P. Zanon. Expressive
classifiers at CSC: An overview of the main research streams. In Proceedings of
the XIV Colloquium on Musical Informatics (XIV CIM 2003) May 8–10. Firenze,
2003.

S. Canazza, G. De Poli, C. Drioli, A. Rodà, and A. Vidolin. Modeling and
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W. Goebl, E. Pampalk, and G. Widmer. Exploring expressive performance
trajectories: Six famous pianists play six Chopin pieces. In Scott D. Lip-
scomp, Richard Ashley, Robert O. Gjerdingen, and Peter Webster, editors,
Proceedings of the 8th International Conference on Music Perception and Cognition,
Evanston, IL, 2004 (ICMPC8), pages 505–509. Causal Productions, Adelaide,
Australia, 2004. CD-ROM.

H. Gottschewski. Die Interpretation als Kunstwerk. Musikalische Zeitgestaltung
und ihre Analyse am Beispiel von Welte-Mignon-Klavieraufnahmen aus dem Jahre
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