Maintaining skill across the life span: Magaloff's entire Chopin at age 77

Sebastian Flossmann¹, Werner Goebl¹, and Gerhard Widmer^{1,2}

¹ Department of Computational Perception, Johannes Kepler University Linz, Austria ² Austrian Research Institute for Artificial Intelligence, Vienna, Austria

The study is based on a corpus containing the entire works of Chopin performed by Nikita Magaloff at the age of 77, precisely measured and fully annotated with score information. On this data, we test a model of successful aging including selection, optimization, and compensation hypotheses (SOC). We identify performance errors, compare Magaloff's etudes with recordings by 14 other renowned pianists, and investigate specific age effects in a selected nocturne in 14 different recordings.

Keywords: performance errors; symbolic data; SOC model; aging virtuosity; piano performance

Many renowned pianists perform with great success up to old ages (e.g. Backhaus played his last concert at 85, Horowitz at 84, Arrau at 88). The demands posed by performing publicly are enormous (motor skills, memory, physical endurance, stress factors; see Williamon 2004). Theories of human life-span development identify three factors to be mainly responsible for "successful aging": selection, optimization, and compensation (SOC model, Baltes and Baltes 1990). Applied to piano performance this would imply that older pianists play a smaller repertoire (selection), practice these few pieces more (optimization), and hide technical deficiencies by reducing the tempo of fast passages while maintaining tempo contrasts between fast and slow passages (compensation) (Vitouch 2005).

In this study, we examine a unique corpus of Chopin performances by Nikita Magaloff, recorded on stage at age 77. We test whether Magaloff actually used strategies identified in the SOC model to master this unprecedented project. First, we assess his performance by quantifying performance errors. Second, we analyze recordings of the etudes by other renowned pianists to test whether Magaloff's performance tempi were slower than those of the others. Finally, we examine whether tempo contrasts are maintained when fast sections are performed slower at older ages by analyzing recordings of the *Nocturne Op.15 No.1 (Andante cantabile)*, which contains a fast, technically demanding middle section *(con fuoco)*.

METHOD

Materials

In Spring 1989, Magaloff performed the entire work of Chopin for solo piano that was published during Chopin's lifetime (Op.1-64) in six public appearances at the Vienna Konzerthaus. These concerts were recorded with a Bösendorfer computer-controlled grand piano that provides a huge set of symbolic performance data with highest precision—156 pieces over 320,000 performed notes; about 10 hours of performed music.

To put Magaloff's etudes performances into context, recordings of the etudes by the following performers were also analyzed (a total of 289 performances): Arrau (recorded 1956), Ashkenazy (1975), Backhaus (1928), Biret (1990), Cortot (1934), Gavrilov (1985), Giusiano (2006), Harasiewicz (1961), Lortie (1986), Lugansky (1999), Magaloff (1975), Magaloff (1989), Pollini (1972), Schirmer (2003), Shaboyan (2007), and Sokolov (1985).

The 14 recordings of the *Nocturne Op.15 No.1* were by Argerich (1965), Arrau (1978), Ashkenazy (1985), Barenboim (1981), Harasiewicz (1961), Horowitz (1957), Leonskaja (1992), Maisenberg (1995), Magaloff (1975), Perahia (1994), Pires (96), Pollini (68), Richter (68), and Rubinstein (1965).

Procedure

To make Magaloff's performances accessible for analysis, the entire Chopin scores were scanned (946 pages) and subsequently converted into a digital format (musicXML) using a commercial optical music recognition software and custom-made post-correction steps. The data from Magaloff's performances were then semi-automatically matched to the symbolic scores, building a huge corpus with precise performance information for all score notes and vice-versa. Based on the alignment, performance errors were categorized as insertion, deletion, or substitution errors. We extracted basic tempo values (see Note) of Magaloff's performances of the etudes Op.10 and Op.25 in order to compare them with recordings by the other famous pianists. These audio recordings were semi-automatically beat-tracked using the software *Beatroot* (Dixon 2007) to determine the expressive timing at the beat level; tempo values were then extracted as before.

	Ins.	Del.	Sub.		Ins.	Del.	Sub.
Rondi	1.86	2.40	2.50	Polonaises	5.74	4.09	1.54
Sonatas	4.20	3.63	1.82	Preludes	3.38	2.97	1.56
Mazurkas	2.44	3.41	1.00	Impromptus	1.36	2.12	0.89
Nocturnes	2.22	2.46	0.99	Scherzi	6.15	2.97	1.63
Etudes	3.90	3.94	1.33	Ballades	5.00	2.33	1.23
Waltzes	2.48	3.53	1.26	Pieces	4.36	3.49	2.27

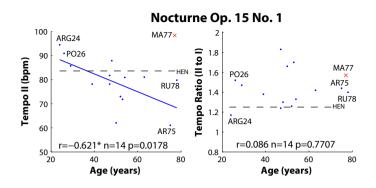
Table 1. Error % by piece category and error type (i.e. insertion, deletion, substitution).

RESULTS

Performance errors

Overall, Magaloff's data contained 3.73% insertion, 3.28% deletion, and 1.52% substitution errors. This is slightly higher than Repp's (1996) account for other pianists (1.48%, 0.98%, and 0.21%, respectively), but comparing the particular piece used by Repp (Op.28/15), the error percentages were similar. With a percentage higher than 5%, the scherzi, ballades, and polonaises stand out in terms of insertion errors (see Table 1). The *Allegro de Concert* Op.20 in the category "pieces" shows an exceptionally high insertion percentage (6.77%). With an insertion percentage below 2.3%, the nocturnes, rondi, and impromptus constitute the low-insertion categories. The impromptus are also the category with the lowest percentage of deletion errors (2.12%), while the etudes and polonaises exhibit the highest percentage of deletions.

Performance tempo of etudes


Table 2 shows the tempo modes obtained for all pianists. Each performance is named by the first two letters of the pianist, followed by the pianist's age at the time of the recording. For the sake of comparison the metronome indications from the Henle Edition (Zimmermann 1983) were added (HEN). In 12 of the 18 pieces, Magaloff's tempo (MA) is within a 10% range of the Henle indications. Three pieces are more than 5% slower and three pieces more than 5% faster compared with the metronome markings. Compared with the performances of 14 other recordings (including an earlier performance by Magaloff in 1975) Magaloff's performances of the Op.10 etudes are on average 1.2% slower than the average over all other recordings. The Op.25 etudes are on average about 5.6% slower than the average performance.

Comparing Magaloff's recordings at the age of 63 and 77, the tempi vary to a surprising degree, but no systematic tempo decrease in the latter can be

<i>Op.10/1</i>	Op.10/2	Op.10/4	<i>Op.10/10</i>	Op.10/12	Op.25/1
BI49 157	BI49 129	HA29 157	BI49 426	PO30 64	HA29 77
HA29 159	MA77 139	BI49 157	BA44 450	LO27 64	AS38 84
SH32 163	SH32 140	AR53 161	MA63 467	MA6365	LO27 91
CO56 164	HEN 144	SC31 165	SC31 471	SC31 66	LU27 93
MA63 165	HA29 145	MA63166	HEN 480	LU27 66	SO35 94
SC31 169	MA63 145	SH32 169	SH32 480	AS38 66	GA30 102
AS38 170	CO56 149	LO27 169	AR53 483	HA29 68	MA63 102
MA77 170	AR53 152	PO30 169	LU27 487	BA44 71	BI49 103
HEN 176	SC31 152	MA77 170	HA29 505	SH32 71	HEN 104
PO30 178	PO30 152	GI33 174	GA30 508	MA77 72	MA77 104
LO27 179	LO27 156	AS38 174	AS38 512	BI49 74	AR53 104
BA44 179	AS38 157	CO56 175	PO30 513	CO56 75	GI33 105
LU27 180	LU27 159	HEN 176	LO27 529	HEN 76	BA44 109
GA30 190	GI33 165	LU27 179	CO56 542	GI33 77	PO30 111
GI33 191	GA30 173	BA44 191	MA77 550	GA30 87	CO57 118
AR53 196	BA44 176	GA30 197	GI33 574	AR53 88	

Table 2. Tempo modes of different pianist for selected pieces from Op.10 and Op.25. Entries are named by the first two letters of the pianists' name and age at recording.

Op.25/6 Op.25/8		Op.25/9		<i>Op.25/10</i>		Op.25/10		Op.25/12			
HEN	69	BI49	64	BI49	94	MA77	64-90- 65	HA29	51	HA29	58
MA63	70	HA29	66	HA29	104	BI49	64-106-68	BI49	53	MA77	62
BI49	71	HEN	69	AR53	107	LO27	67-86- 70	MA63	58	MA63	69
AR53	71	GA30	69	MA77	107	BA44	71- 112- 70	GI33	59	AS38	70
CO57	73	MA63	69	LU27	107	AR53	71-96-68	MA77	60	LO27	73
PO30	74	AR53	70	CO57	110	AS38	71-84-70	LO27	61	CO57	73
BA44	74	LO27	71	HEN	112	MA63	71- 100-70	CO57	61	BI49	74
MA77	75	MA77	71	PO30	113	CO57	71- 127- 71	AS38	62	GI33	74
AS38	75	CO57	73	MA63	115	HEN	72-126-72	LU27	63	SO35	76
HA29	75	GI33	73	GI33	117	PO30	72-104-74	PO30	63	LU27	76
LO27	77	AS38	73	LO27	118	GI33	74-129-73	AR53	63	PO30	76
GI33	78	PO30	76	GA30	120	HA29	74-112- 76	SO35	66	AR53	77
LU27	83	LU27	77	AS38	125	LU27	75-96- 71	HEN	69	HEN	80
GA30	84	BA44	78	SO35	125	SO35	83-86- 87	BA44	69	BA44	82
SO35	85	SO35	81	BA44	131	GA30	86-117- 81	GA30	71	GA30	83

Figure 1. Nocturne Op.15 No.1 by 14 pianists and Magaloff: basic tempo of middle section (left) and tempo ratio between middle and first section (right) against performer's age. Dashed lines indicate given tempo (left) or tempo ratio (right) by Henle edition.

found. On the contrary, in 12 pieces out of 18, the recording at age 77 is faster, sometimes to a considerable degree (up to 17% in Op.10 No.10). On the whole, no significant correlation of age and tempo could be established.

Age effects and tempo contrast in a nocturne

For an exemplary piece containing tempo contrasts, we examined the tempo values in performances of the *Nocturne Op.15 No.1* by 14 other pianists. We found a significant correlation between the performance tempo of the middle section and the age of the performer (the older, the slower; see Figure 1). However, the tempo ratios between the contrasting sections of the piece showed no overall age effect, confirming Vitouch's (2005) interpretation of the SOC model. Age seemed to have no effect on Magaloff's nocturne; he played faster than the youngest of the performers while keeping a comparable tempo ratio. The same tendency could be found in Op.25 No.10; however, the negative correlation was not significant.

DISCUSSION

Based on the fact that Magaloff performed the entire piano works by Chopin, we can refute the selection part of the SOC model. Due to missing information about his practice regime before and during the performance period, we cannot make a statement about optimization processes. Magaloff's tempi do not point to compensation processes, which were indeed found with other famous pianists. However, his relatively high error rates may indicate that Magaloff aimed at realizing his musical ideas of Chopin's work rather than at error-free performances. In sum, Magaloff's data does not seem to corroborate the SOC model. This study is the first of its kind to examine a huge corpus of symbolic performance data of the entire work of a composer and to put it into context of a substantial number of other recordings.

Note

A basic tempo value was estimated by the mode value, the most frequent bin of an interbeat interval histogram with a bin size of 4% of the mean inter-beat interval.

Acknowledgments

Funded by the Austrian National Research Fund (FWF), project no. P19349-N15.

Address for correspondence

Sebastian Flossmann, Dept of Computational Perception, Johannes Kepler University Linz, Altenberger Strasse 69, Linz 4040, Austria; *Email:* sebastian.flossmann@jku.at

References

- Baltes P. B. and Baltes M. M. (1990). Psychological perspectives on successful aging: The model of selective optimization with compensation. In P. B. Baltes and M. M. Baltes (eds.), *Successful Aging* (pp. 1-34). Cambridge: Cambridge University Press.
- Dixon S. (2007). Evaluation of the audio beat tracking system BeatRoot. Journal of New Music Research, 36, pp. 39-50.
- Goebl W., Pampalk E., and Widmer G. (2004). Exploring expressive performance trajectories: Six famous pianists play six Chopin pieces. *Proceedings of the Eighth International Conference on Music Perception and Cognition* (pp. 505-509), Adelaide, Australia: Causal Productions.
- Goebl W., Flossmann S., and Widmer G. (2009). Computational investigations into between-hand synchronization in piano playing: Magaloff's complete Chopin. *Proceedings of the Sixth Sound and Music Computing Conference* (pp. 291-296), Porto, Portugal: Casa da Música.
- Repp B. H. (1996). The art of inaccuracy: Why pianists' errors are difficult to hear. Music Perception, 14, pp. 161-184.
- Vitouch O. (2005). Erwerb musikalischer Expertise [Acquisition of musical expertise]. In T. H. Stoffer and R. Oerter (eds.), Allgemeine Musikpsychologie (Enzyklopädie der Psychologie) (vol. D/VII/1, pp. 657-715). Göttingen, Germany: Hogrefe.
- Williamon A. (2004). Musical Excellence. Oxford: Oxford University Press.
- Zimmermann E. (1983). Chopin Etüden, Urtext. Munich, Germany: G. Henle Verlag.