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ABSTRACT

Music ensembles have to synchronize their performances
with highest precision in order to achieve the desired musi-
cal results. For that purpose the musicians do not only rely
on their auditory perception but also perceive and interpret
the movements and gestures of their ensemble colleges. In
this paper we present a method for motion analysis of musi-
cal ensembles based on head tracking with a Kinect camera.
We discuss first experimental results with a violin duo per-
formance and present ways of analyzing and visualizing the
recorded head motion data.
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1. INTRODUCTION

Members of music ensembles have to synchronize to one
another with highest precision in order to achieve the de-
sired common musical goal. How musical ensembles achieve
such a delicate synchronization is a wide and rich topic for
research. Many aspects play a role, such as the musical
style, the configuration of the ensemble (piano, string in-
struments, etc., and perhaps also a conductor or dancers),
the experience of the musicians, and many others. Syn-
chronizing requires the musicians to not rely on their audi-
tory perception alone but also to perceive and interpret the
movements and gestures of their ensemble colleagues. In
order to pursue further research in this direction, we devel-
oped a Kinect-based method for motion analysis of musical
ensembles. Our method concentrates on head movements
which are clearly visible and which the musician may use to
communicate with the other ensemble members and the au-
dience. Research in ensemble synchronization could provide
new pedagogical insights for ensemble musicians. Further-
more, a better understanding of ensemble synchronization
could lead to better computer accompaniment since cur-
rent solutions [6] are not based on an informed model of
(human) ensemble synchronization. Head motion has been
already previously shown to play an important communica-
tive role in piano duets [2]. However, those studies have
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used obtrusive sensor technologies such as inertial sensing
or marker-based motion capture.

This paper contributes a method for motion analysis of
musical ensembles based on head tracking from depth cam-
era images. This provides an unobtrusive and affordable
method to examine synchronization by movement analysis
in musical ensembles. Furthermore, we present first exper-
imental results with a violin duo.

2. RELATED WORK

The Kinect has been used in many musical projects such
as those described in [9, 7, 11, 12]. Originally, the Kinect
was intended for capturing human movement unobtrusively.
The standard algorithm [8] that is shipped with the Kinect
is based on a decision forest that is trained with an exten-
sive training set. This training set is composed of record-
ings of actors that were filmed with a depth camera while
their movements were simultaneously tracked with a maker-
based optical motion capture system. Furthermore, artifi-
cial training data was constructed by simulating and ren-
dering human movement. This is possible since the depth
information is much less variable than RGB information
usually varying between users due to different clothing and
and different lighting conditions from recording to record-
ing. The method shipped with the Kinect is not suited for
capturing instrumentalist movements, since such conditions
(having a violin in the hand, sitting at the piano) were not
reflected in the training set. It would be possible to adopt
the approach and construct a training in order to apply
Shotton’s et al. method [8]. However, the large effort to
construct such a dataset makes such an approach unpracti-
cal for musical applications. Therefore, other solutions have
to be found for musical applications, such as for capturing
pianist movements [3].

In this paper we provide a method for analysis of head
movements in music ensembles. In contrast to [3], which
provides unobtrusive pianist motion capture of a large range
of joints of a single person, we detect the head movements
of multiple ensemble members. Furthermore, our method
determines not only the head position but also the viewing
direction of the performers. We report first experimental
results and data analysis with a violin duet performance.

3. IMAGE ANALYSIS

Setup & Recording: A Kinect depth camera is mounted
facing downwards so that it records the music ensemble from
above (see Fig. 1). The optimal height of the Kinect is
empirically determined with the ensemble in place so that
the heads of the ensemble members are always visible dur-
ing the performance of the piece, taking into account head



Figure 1: The raw image provided by the Kinect.
Darker areas are closer to the camera; lighter areas
are farther away. The heads and the bow tips are
closest to the camera.

swaying motions that are typical during instrument perfor-
mance. Our analysis algorithm assumes that the heads of
the ensemble members are the highest areas in the depth
image (i.e., closest to the camera). Therefore, the recording
area has to be free of other high objects. The depth camera
images are recorded in a lossless format for later analysis at
a frame rate of 30 frames per second.

Algorithm overview: We track the head positions of
the ensemble members in order to provide means to ana-
lyze gestural ensemble communication and examine move-
ment synchronization of the ensemble members. The head
seems to be well suited for expressive performance analy-
ses as shown by previous work [1]. The swaying motion
of the head, which is a compound movement by the entire
body, is well visible and has usually no specific function
in operating the instrument. It is therefore available for
communication with the audience and ensemble members.
In order to make the most from the depth data, the di-
rection of the head (which is an indicator for the viewing
direction) and the position of the head of all ensemble mem-
bers are tracked. The design of the analysis algorithm takes
into account computational efficiency to enable future use in
real-time interactive computer music projects. The image
analysis consists of 2 steps, which will be discussed in the
next sections: head position detection and ellipse matching.

3.1 Head position detection

The Kinect measures depth by projecting an infrared dot
pattern into the space. The dot pattern is recorded with
an infrared camera. By identifying the dot patterns in the
image and evaluating the distance between the dots, the
distance from the camera can be determined [10]. The raw
Kinect depth image can be seen in Fig. 1. The different
shades of grey correspond to different distances from the
camera. Darker colors (i.e., lower values) correspond to
points that are close to the camera; lighter colors corre-
spond to points that are further away. Due to shadows and
reflections, it is not always possible to determine the dis-
tance. Areas, in which the distance measurements fail, are
marked with zero values, visualized as black areas in the
raw data image.

The heads are the highest areas in the image. In order to
find the first head, the highest point in the image is iden-
tified by iterating through the depth values. It sometimes
happens that the bow tip is even higher than the head.
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Figure 2: Neighborhood around the candidate head
pixel. The rectangle is spanned by 10 pixels in each
direction.

Figure 3: The shaded area centered around the head
position of the taller player is excluded in order to
detect the head position of the second player.

In order to filter out such values, the neighborhood of the
“candidate head pixel” is examined. The neighborhood is a
rectangular area centered around the candidate head pixel
(see Fig. 2). If the candidate head pixel is really the highest
point on the head then the surrounding pixels will also be
head pixels and thus have very similar depth values. On the
other hand, if the candidate head pixel is in fact a bow tip
pixel then only some of the surrounding pixels will be bow
pixels and many other pixels will be floor pixels and have
distinctively different depth values. By examining the frac-
tion of pixels in the neighborhood that have similar depth
values to the candidate head pixel, these two conditions can
be differentiated effectively.

The head position of the tallest ensemble member is de-
termined through the method described above. In order
to detect the head position of the next ensemble member,
the same method is repeated. However, a large rectangular
area centered around the the previously detected head(s) is
excluded from the analysis (see Fig. 3). The overall process
is continued until all ensemble members are detected.

3.2 Ellipse matching

In the previous step, the approximate positions of the heads
of the ensemble players were detected. In this step the po-
sition of the head is refined and the head direction is deter-
mined. First, all head pixels of each player are determined.
This is done by comparing the depth values of the surround-
ing pixels in a rectangular area with the depth value of the
highest head pixel determined in the previous step. If the
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Figure 4: Head pixels are detected in a rectangular
area around the highest head point based on the
depth difference. Sometimes bow pixels are incor-
rectly labeled as head pixels.

Figure 5: The contours of the head (upper) and the
matched ellipses (lower)

depth difference of the pixel amounts to only a few centime-
ters, it is recognized as a head pixel (see Fig. 4). Sometimes
bow pixels are located within that rectangular area and are
labeled incorrectly. To avoid this problem a contour detec-
tion algorithm is used. This algorithm finds the contours of
the regions of connected pixels. The largest contour is then
recognized as the head contour. This provides an effective
way of differentiation since the contours originating from
the bow are rather small. An ellipse is matched onto the
contour of the head (see Fig. 5). The center point and the
direction of the matched ellipse correspond to the center of
the head and the head direction.

4. EXPERIMENTAL RESULTS

We recorded two violinists performing a short piece with
a Kinect camera mounted above the musicians. The head
position and orientation was extracted with the above al-
gorithm. The resulting head position and head orientation
trajectories are plotted in Fig. 6. The forward-backward
(v) and the sideways motion (x) of both musicians do not
adhere to a strict period as one would expect if there was
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a one-to-one correspondence to the pulse of the music. Al-
though the trajectories of player B (blue) are not strictly
periodical, they show a high regularity, grouping time into
small chunks according to the fine-grained musical struc-
ture of the piece. Player A’s movements (red) on the other
hand are freer and less regular. Judging from the motion
graphs alone it seems that player B (blue) has the lead in
controlling the ensembles tempo, as evident by the busier
graphs and more regular motions. We did not detect any
systematic variation in the diagram showing the viewing
direction.

Acceleration, the second derivative of position, has been
shown to contain visual information on timing cues used in
ensemble performance, particularly in conducting gestures
[4]. Therefore the x and y position data were converted
to a functional form using Functional Data Analysis [5] in
a further analysis step. Order 6 b-splines were fit to the
second derivative (acceleration), with knots placed every 5
data points, and smoothed using a roughness penalty on
the fourth derivative (A = 107°), which smoothed the sec-
ond derivative (acceleration). Head acceleration of x and
y was combined by taking the root of the summed squares
of x and y acceleration trajectories. The compound head
acceleration (indicating head acceleration in any direction)
is plotted in Fig. 7 (top panel) for both players.

To elucidate any fine-grained temporal relationships in
the two musicians’ head movements, we computed multiple
cross-correlations between the two compound head acceler-
ation trajectories. The bottom panel of Fig. 7 shows the
color-coded coefficients of cross-correlations calculated on
windows of 3.33 seconds (or 200 samples at a re-sampling
rate of 60 fps) shifted 12.5% sideways, resulting in about 2.5
analyses per second. Red colors reflect regions of high cor-
relation (in-phase movements between the musicians) while
blue colors show negative correlations (anti-phase motion).
Negative lags (in seconds) mean that A’s head movements
lead the others’ movements, while positive lags point to
the opposite (B’s movements anticipating A’s movements).
This “cross-correlogram” reveals longer regions of dark red
color: from about 13—24 s player A seems to anticipate the
other by about half a second, while the opposite occurs be-
tween 36s and 47s. This novel way of presenting motion
synchronicities over time may represent a powerful anal-
ysis tool to unseal otherwise hidden motion relationships
between performing musicians.

5. CONCLUSION

The members of a musical ensemble have to synchronize one
another with highest precision to achieve the desired musical
goal. The musicians do not only rely on acoustic informa-
tion but also anticipate timing and communicate with each
other based on gestures and movements. There has been
quite some research on ensemble synchronization (see [2] for
a discussion of existing works). However, up to now motion
analyses with ensembles have been performed using intru-
sive technologies, such as inertial sensing or marker-based
optical motion capture systems. Particularly the latter are
very expensive in both prime costs and data evaluation. In
this paper we proposed a head tracking method using a
Kinect depth camera which is both very inexpensive in its
prime costs and, even more importantly, and unobtrusive
in the sense that it does not require markers to be glued on
the participants. Furthermore, we have demonstrated the
opportunities of our motion tracking method for head mo-
tion analysis revealing complex interaction patterns hidden
in the complex kinematics of musicians’ body motion.
Future work will evaluate this tracking and analysis method
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Figure 6: The head position trajectories of player A (red) and player B (blue). The first two diagrams show
the forward-backward motion of the musicians (along the image y-axis). The next two diagrams show the
sideways motions of the musicians (along the image x-axis). The last diagram shows the musicians head
orientation (an indicator for viewing direction). The horizontal gray lines crossing all diagrams are placed
at maxima and minima of player B’s forward-backward motion (the second diagram).
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Figure 7: Violin duet performance: Compound head acceleration (in pixels/sQ) against time in seconds
(upper panel) and cross-correlation coefficients (color-coded) for lag (in seconds) over time (in seconds).
Regions of dark red indicate kinematic in-phase relationships at various lag times.

in controlled real-life experiments. Another path of exten-
sion is to enable the algorithm to capture and analyze data
from multiple daisy-chained and synchronized Kinect cam-
eras. This would enable us to monitor larger ensembles up
to an orchestra and explore the widely unknown kinematic
dynamics of music expression and communication evolving
during performances of large music ensembles.
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